Закон кирхгофа матрицы

, где p+q=n.

Очевидно, что обе формулировки равноценны и выбор формы записи уравнений может быть произвольным. Существенным является только соглашение о знаках токов для данной цепи, т.е. в пределах описания одной электрической цепи нельзя для разных узлов использовать разные знаки для токов направленных к узлам или от узлов .

При составлении уравнений по первому закону Кирхгофа направления токов в ветвях электрической цепи выбирают обычно произвольно. При этом необязательно даже стремиться, чтобы во всех узлах цепи присутствовали токи разных направлений. Может получиться так, что в каком-либо узле все токи сходящихся в нем ветвей будут направлены к узлу или от узла, нарушая тем самым принцип непрерывности. В этом случае в процессе определения токов один или несколько из них окажутся отрицательными, что будет свидетельствовать о протекании их в направлении противоположном принятому.

Второй закон Кирхгофа связан с понятием потенциала электрического поля, как работы, совершаемой при перемещении единичного точечного заряда в пространстве. Если такое перемещение совершается по замкнутому контуру , то суммарная работа при возвращении в исходную точку будет равна нулю. В противном случае путем обхода контура можно было бы получать положительную энергию, нарушая закон ее сохранения.

Каждый узел или точка электрической цепи обладает собственным потенциалом и, перемещаясь вдоль замкнутого контура, мы совершаем работу, которая при возврате в исходную точку будет равна нулю. Это свойство потенциального электрического поля и описывает второй закон Кирхгофа в применении к электрической цепи.

Он также как и первый закон формулируется в двух вариантах, связанных с тем, что падение напряжения на источнике ЭДС численно равно электродвижущей силе, но имеет противоположный знак. Поэтому, если какая либо ветвь содержит сопротивление и источник ЭДС, направление которой согласно с направлением тока, то при обходе контура эти два слагаемых падения напряжения будут учитываться с разными знаками. Если же падение напряжения на источнике ЭДС учесть в другой части уравнения, то его знак будет соответствовать знаку напряжения на сопротивлении.

Сформулируем оба варианта второго закона Кирхгофа , т.к. они принципиально равноценны:

  • алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю

Примечание: знак + выбирается перед падением напряжения на резисторе, если направление протекания тока через него и направление обхода контура совпадают; для падений напряжения на источниках ЭДС знак + выбирается, если направление обхода контура и направление действия ЭДС встречны независимо от направления протекания тока;

  • алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжения на резисторах в этом контуре
  • , где p+q=n

    Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

    Здесь также как и в первом законе оба варианта корректны, но на практике удобнее использовать второй вариант, т.к. в нем проще определить знаки слагаемых.

    С помощью законов Кирхгофа для любой электрической цепи можно составить независимую систему уравнений и определить любые неизвестные параметры, если число их не превышает число уравнений. Для выполнения условий независимости эти уравнения должны составляться по определенным правилам.

    Общее число уравнений N в системе равно числу ветвей N в минус число ветвей, содержащих источники тока N J , т.е. N = N в — NJ .

    Наиболее простыми по выражениям являются уравнения по первому закону Кирхгофа, однако их число N 1 не может быть больше числа узлов Nу минус один.
    Недостающие уравнения составляются по второму закону Кирхгофа, т.е.

    Сформулируем алгоритм составления системы уравнений по законам Кирхгофа :

    1. определить число узлов и ветвей цепи Nу и N в ;
    2. определить число уравнений по первому и второму законам N 1 и N 2 . ;
    3. для всех ветвей (кроме ветвей с источниками тока) произвольно задать
      направления протекания токов;
    4. для всех узлов, кроме одного, выбранного произвольно, составить уравнения по первому закону Кирхгофа;
    5. произвольно выбрать на схеме электрической цепи замкнутые контуры таким образом, чтобы они отличались друг от друга по крайней мере одной ветвью и чтобы все ветви, кроме ветвей с источниками тока, входили по крайней мере в один контур;
    6. произвольно выбрать для каждого контура направление обхода и составить уравнения по второму закону Кирхгофа, включая в правую часть уравнения ЭДС действующие в контуре, а в левую падения напряжения на резисторах. Примечание: Знак ЭДС выбирают положительным, если направление ее действия совпадает с направлением обхода независимо от направления тока; а знак падения напряжения на резисторе принимают положительным, если направление тока в нем совпадает с направлением обхода.
    7. Рассмотрим этот алгоритм на примере рис 2.

      Здесь светлыми стрелками обозначены выбранные произвольно направления токов в ветвях цепи. Ток в ветви с R 4 не выбирается произвольно, т.к. в этой ветви он определяется действием источником тока.

      Число ветвей цепи равно 5, а т.к. одна из них содержит источник тока, то общее число уравнений Кирхгофа равно четырем.

      Число узлов цепи равно трем ( a, b и c ), поэтому число уравнений по первому закону Кирхгофа равно двум и их можно составлять для любой пары из этих трех узлов. Пусть это будут узлы a и b , тогда

      de.ifmo.ru

      Закон кирхгофа матрицы

      Рассмотренные методы расчета электрических цепей – непосредственно по законам Кирхгофа, методы контурных токов и узловых потенциалов – позволяют принципиально рассчитать любую схему. Однако их применение без использования введенных ранее топологических матриц рационально для относительно простых схем. Использование матричных методов расчета позволяет формализовать процесс составления уравнений электромагнитного баланса цепи, а также упорядочить ввод данных в ЭВМ, что особенно существенно при расчете сложных разветвленных схем.

      Переходя к матричным методам расчета цепей, запишем закон Ома в матричной форме.

      Пусть имеем схему по рис. 1, где — источник тока. В соответствии с рассмотренным нами ранее законом Ома для участка цепи с ЭДС для данной схемы можно записать:

      Однако, для дальнейших выкладок будет удобнее представить ток как сумму токов k -й ветви и источника тока, т.е.:

      Подставив (2) в (1), получим:

      Формула (3) представляет собой аналитическое выражение закона Ома для участка цепи с источниками ЭДС и тока (обобщенной ветви).

      Соотношение (3) запишем для всех n ветвей схемы в виде матричного равенства

      где Z – диагональная квадратная (размерностью n x n ) матрица сопротивлений ветвей, все элементы которой (взаимную индуктивность не учитываем), за исключением элементов главной диагонали, равны нулю.

      Соотношение (4) представляет собой матричную запись закона Ома.

      Если обе части равенства (4) умножить слева на контурную матрицу В и учесть второй закон Кирхгофа, согласно которому

      то есть получили новую запись в матричной форме второго закона Кирхгофа.

      Метод контурных токов в матричной форме

      В соответствии с введенным ранее понятием матрицы главных контуров В , записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам.

      Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c = n m +1 . Выражение (6) запишем следующим образом:

      В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j –го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j –й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения

      где — столбцовая матрица контурных токов; — транспонированная контурная матрица.

      С учетом (8) соотношение (7) можно записать, как:

      Полученное уравнение представляет собой контурные уравнения в матричной форме. Если обозначить

      то получим матричную форму записи уравнений, составленных по методу контурных токов:

      где — матрица контурных сопротивлений; — матрица контурных ЭДС.

      В развернутой форме (12) можно записать, как:

      то есть получили известный из метода контурных токов результат.

      Рассмотрим пример составления контурных уравнений.

      Пусть имеем схему по рис. 2. Данная схема имеет четыре узла ( m =4) и шесть обобщенных ветвей ( n =6). Число независимых контуров, равное числу ветвей связи,

      Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3.

      Запишем матрицу контуров, которая будет являться матрицей главных контуров, поскольку каждая ветвь связи входит только в один контур. Принимая за направление обхода контуров направления ветвей связи, получим:

      B

      Диагональная матрица сопротивлений ветвей

      Z

      Матрица контурных сопротивлений

      Zk=BZB T

      .

      Матрицы ЭДС и токов источников

      Тогда матрица контурных ЭДС

      .

      Матрица контурных токов

      Таким образом, окончательно получаем:

      ,

      где ; ; ; ; ; ; ; ; .

      Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов.

      Метод узловых потенциалов в матричной форме

      На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:

      где — диагональная матрица проводимостей ветвей, все члены которой, за исключением элементов главной диагонали, равны нулю.

      Умножив обе части равенства (14) на узловую матрицу А и учитывая первый закон Кирхгофа, согласно которому

      Выражение (16) перепишем, как:

      Принимая потенциал узла, для которого отсутствует строка в матрице А , равным нулю, определим напряжения на зажимах ветвей:

      Тогда получаем матричное уравнение вида:

      Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить

      то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:

      где — матрица узловых проводимостей; — матрица узловых токов.

      В развернутом виде соотношение (22) можно записать, как:

      то есть получили известный из метода узловых потенциалов результат.

      Рассмотрим составление узловых уравнений на примере схемы по рис. 4.

      Данная схема имеет 3 узла ( m =3) и 5 ветвей ( n =5) . Граф схемы с выбранной ориентацией ветвей представлен на рис. 5.

      Узловая матрица (примем )

      А

      Диагональная матрица проводимостей ветвей:

      Y

      где .

      Матрица узловых проводимостей

      .

      Матрицы токов и ЭДС источников

      Следовательно, матрица узловых токов будет иметь вид:

      ,

      где ; ; ; ; .

      Анализ результатов показывает, что полученные уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу узловых потенциалов.

    8. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
    9. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
    10. Контрольные вопросы и задачи

    11. В чем заключаются преимущества использования матричных методов расчета цепей?
    12. Запишите выражения матрицы контурных сопротивлений и матрицы контурных ЭДС.
    13. Запишите выражения матрицы узловых проводимостей и матрицы узловых токов.
    14. Составить узловые уравнения для цепи на рис. 2.

    Составить контурные уравнения для цепи рис. 4, приняв, что дерево образовано ветвями 3 и 4 (см. рис. 5).

    www.toehelp.ru

    Топологические матрицы

    Вернутся в раздел ТОЭ

    Топологию цепи в виде матриц называют топологическими матрицами. Выделяют три таких матрицы: узловую матрицу, контурную матрицу и матрицу сечений.

    Автор уже коротко опубликовывал в разделе ТОЭ статью на тему Топология электрических сетей, тем не меняя возвращаясь к этой теме давайте вместе вспомним:

    электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения. Соединение элементов электрической цепи наглядно отображается ее схемой. Рассмотрим для примера две электрические схемы (рис. 1, 2), введя понятие ветви и узла.

    Ветвью называется участок цепи, обтекаемый одним и тем же током.

    Узел – место соединения трех и более ветвей.

    Представленные схемы различны и по форме, и по назначению, но каждая из указанных цепей содержит по 6 ветвей и 4 узла, одинаково соединенных. Таким образом, в смысле геометрии (топологии) соединений ветвей данные схемы идентичны.

    Топологические (геометрические) свойства электрической цепи не зависят от типа и свойств элементов, из которых состоит ветвь. Поэтому целесообразно каждую ветвь схемы электрической цепи изобразить отрезком линии. Если каждую ветвь схем на рис. 1 и 2 заменить отрезком линии, получается геометрическая фигура, показанная на рис. 3.

    Условное изображение схемы, в котором каждая ветвь заменяется отрезком линии, называется графом электрической цепи. При этом следует помнить, что ветви могут состоять из каких-либо элементов, в свою очередь соединенных различным образом.

    Отрезок линии, соответствующий ветви схемы, называется ветвью графа. Граничные точки ветви графа называют узлами графа. Ветвям графа может быть дана определенная ориентация, указанная стрелкой. Граф, у которого все ветви ориентированы, называется ориентированным.

    Подграфом графа называется часть графа, т.е. это может быть одна ветвь или один изолированный узел графа, а также любое множество ветвей и узлов, содержащихся в графе.

    В теории электрических цепей важное значение имеют следующие подграфы:

  • Путь – это упорядоченная последовательность ветвей, в которой каждые две соседние ветви имеют общий узел, причем любая ветвь и любой узел встречаются на этом пути только один раз. Например, в схеме на рис. 3 ветви 2-6-5; 4-5; 3-6-4; 1 образуют пути между одной и той же парой узлов 1 и 3 . Таким образом, путь – это совокупность ветвей, проходимых непрерывно.
  • Контур – замкнутый путь, в котором один из узлов является начальным и конечным узлом пути. Например, для графа по рис. 3 можно определить контуры, образованные ветвями 2-4-6; 3-5-6; 2-3-5-4 . Если между любой парой узлов графа существует связь, то граф называют связным.
  • Дерево – это связный подграф, содержащий все узлы графа, но ни одного контура. Примерами деревьев для графа на рис. 3 могут служить фигуры на рис. 4.
    1. Ветви связи (дополнения дерева) – это ветви графа, дополняющие дерево до исходного графа.

    Если граф содержит m узлов и n ветвей, то число ветвей любого дерева , а числа ветвей связи графа .

  • Сечение графа – множество ветвей, удаление которых делит граф на два изолированных подграфа, один из которых, в частности, может быть отдельным узлом.
  • Сечение можно наглядно изобразить в виде следа некоторой замкнутой поверхности, рассекающей соответствующие ветви. Примерами таких поверхностей являются для нашего графа на рис. 3 S1 иS2 . При этом получаем соответственно сечения, образованные ветвями 6-4-5 и 6-2-1-5.

    С понятием дерева связаны понятия главных контуров и сечений:

  • главный контур – контур, состоящий из ветвей дерева и только одной ветви связи;
  • главное сечение – сечение, состоящее из ветвей связи и только одной ветви дерева.
  • Узловая матрица (матрица соединений) – это таблица коэффициентов уравнений, составленных по первому закону Кирхгофа. Строки этой матрицы соответствуют узлам, а столбцы – ветвям схемы. Для графа на рис. 3 имеем число узлов m=4 и число ветвей n=6. Тогда запишем матрицу Ан , принимая, что элемент матрицы ( i –номер строки; j –номер столбца) равен 1 , если ветвь j соединена с узлом i и ориентирована от него, -1 , если ориентирована к нему, и 0 , если ветвь j не соединена с узлом i . Сориентировав ветви графа на рис. 3, получим:

    Данная матрица АН записана для всех четырех узлов и называется неопределенной. Следует указать, что сумма элементов столбцов матрицы АН всегда равна нулю, так как каждый столбец содержит один элемент +1 и один элемент -1, остальные нули.

    Обычно при расчетах один (любой) заземляют. Тогда приходим к узловой матрице А (редуцированной матрице), которая может быть получена из матрицы АН путем вычеркивания любой ее строки. Например, при вычеркивании строки “4” получим


    Число строк матрицы А равно числу независимых уравнений для узлов , т.е. числу уравнений, записываемых для электрической схемы по первому закону Кирхгофа. Итак, введя понятие узловой матрицы А, перейдем к первому закону Кирхгофа.

    Первый закон Кирхгофа

    Обычно первый закон Кирхгофа записывается для узлов схемы, но, строго говоря, он справедлив не только для узлов, но и для любой замкнутой поверхности, т.е. справедливо соотношение:

    где — вектор плотности тока; — нормаль к участку dS замкнутой поверхности S.

    Первый закон Кирхгофа справедлив и для любого сечения. В частности, для сечения S2 графа на рис. 3, считая, что нумерация и направления токов в ветвях соответствуют нумерации и выбранной ориентации ветвей графа, можно записать:

    Поскольку в частном случае ветви сечения сходятся в узле, то первый закон Кирхгофа справедлив и для него. Пока будем применять первый закон Кирхгофа для узлов, что математически можно записать, как:

    т.е. алгебраическая сумма токов ветвей, соединенных в узел, равна нулю.

    При этом при расчетах уравнения по первому закону Кирхгофа записываются для (m-1) узлов, так как при записи уравнений для всех m узлов одно (любое) из них будет линейно зависимым от других, т.е. не дает дополнительной информации.

    Введем столбцовую матрицу токов ветвей

    Тогда первый закон Кирхгофа в матричной форме записи имеет вид:

    energetik.com.ru