Сложение дробей с разными знаками правило

Сложение чисел с разными знаками, правило, примеры.

В этой статье мы разберемся со сложением чисел с разными знаками. Здесь мы приведем правило сложения положительного и отрицательного числа, и рассмотрим примеры применения этого правила при сложении чисел с разными знаками.

Навигация по странице.

Правило сложения чисел с разными знаками

Положительные и отрицательные числа можно трактовать как имущество и долг соответственно, при этом модули чисел показывают величину имущества и долга. Тогда сложение чисел с разными знаками можно рассматривать как сложение имущества и долга. При этом понятно, что если имущество меньше долга, то после взаимозачета останется долг, если имущество больше долга, то после взаимозачета останется имущество, а если имущество равно долгу, то после расчетов не останется ни долга, ни имущества.

Объединим приведенные выше рассуждения в правило сложения чисел с разными знаками. Чтобы сложить положительное и отрицательное число, надо:

  • найти модули слагаемых;
  • сравнить полученные числа, при этом
    • если полученные числа равны, то исходные слагаемые являются противоположными числами, и их сумма равна нулю,
    • если же полученные числа не равны, то надо запомнить знак числа, модуль которого больше;
  • из большего модуля вычесть меньший;
  • перед полученным числом поставить знак того слагаемого, модуль которого больше.
  • Озвученное правило сводит сложение чисел с разными знаками к вычитанию из большего положительного числа меньшего числа. Также понятно, что в результате сложения положительного и отрицательного числа может получиться или положительное число, или отрицательное число, или нуль.

    Также заметим, что правило сложения чисел с разными знаками справедливо для целых чисел, для рациональных чисел и для действительных чисел.

    Примеры сложения чисел с разными знаками

    Рассмотрим примеры сложения чисел с разными знаками по правилу, разобранному в предыдущем пункте. Начнем с простого примера.

    www.cleverstudents.ru

    Сложение и вычитание дробей

    Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

    Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

    Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

    Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

    Задача. Найдите значение выражения:

    Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

    Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

    Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

    Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

    Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

    Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

    Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  • Плюс на минус дает минус;
  • Минус на минус дает плюс.
  • Разберем все это на конкретных примерах:

    В первом случае все просто, а во втором внесем минусы в числители дробей:

    Что делать, если знаменатели разные

    Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

    Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю», поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

    В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

    Что делать, если у дроби есть целая часть

    Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

    Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  • Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  • Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  • Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.
  • Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь». Если не помните — обязательно повторите. Примеры:

    Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

    Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

    Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

    Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

    Резюме: общая схема вычислений

    В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

    1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
    2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
    3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
    4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.
    5. Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

      www.berdov.com

      Сложение дробей с разными знаками правило

      Действия с отрицательными и положительными числами

      Абсолютная величина (модуль). Сложение.

      Вычитание. Умножение. Деление.

      Абсолютная величина ( модуль ). Для отрицательного числа – это положительное число, получаемое от перемены его знака с « – » на « + »; для положительного числа и нуля – само это число. Для обозначения абсолютной величины (модуля) числа используются две прямые черты, внутри которых записывается это число.

      П р и м е р ы : | – 5 | = 5, | 7 | = 7, | 0 | = 0.

      1) при сложении двух чисел с одинаковыми знаками складываются

      их абсолютные величины и перед суммой ставится общий знак.

      2) при сложении двух чисел с разными знаками их абсолютные

      величины вычитаются ( из большей меньшая ) и ставится знак

      числа с большей абсолютной величиной.

      Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.

      ( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3;

      ( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13;

      ( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3;

      ( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13;

      Умножение. При умножении двух чисел их абсолютные величины умножаются, а произведение принимает знак « + » , если знаки сомножителей одинаковы, и знак « – » , если знаки сомножителей разные.

      Полезна следующая схема (правила знаков при умножении):

      При умножении нескольких чисел ( двух и более ) произведение имеет знак « + » , если число отрицательных сомножителей чётно, и знак « – » , если их число нечётно.

      Деление. При делении двух чисел абсолютная величина делимого делится на абсолютную величину делителя, а частное принимает знак « + » , если знаки делимого и делителя одинаковы, и знак « – » , если знаки делимого и делителя разные.

      Здесь действуют те же правила знаков, что и при умножении:

      www.bymath.net

      Урок математики по теме «Сложение и вычитание чисел с разными знаками» (6-й класс)

      Разделы: Математика

      Цели и задачи урока:

    6. Обобщить и систематизировать знаний учащихся по данной теме.
    7. Развивать предметные и общеучебные навыки и умения, умение использовать полученные знания для достижения поставленной цели; устанавливать закономерности многообразия связей для достижения уровня системности знаний.
    8. Воспитание навыков самоконтроля и взаимоконтроля; вырабатывать желания и потребности обобщать полученные факты; развивать самостоятельность, интерес к предмету.
    9. В результате этого урока учащиеся смогут:

    10. закрепить знания по темам: делимость чисел, обыкновенные дроби, отношения и пропорции, сложение и вычитание положительных и отрицательных чисел,
    11. активизировать внимание на различных этапах урока;
    12. научиться взвешивать и доказывать альтернативные мнения, принимать продуманные решения, общаться друг с другом;

Учебник: Математика. Учебник для 6 класса общеобразовательных учреждений/ Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд.– М: “Русское слово”, 2009 г.

I. Вступительное слово учителя.

II. Проверка домашнего задания.

III. Повторение правил сложения и вычитания чисел с разными знаками. Актуализация знаний.

IV. Решение заданий по учебнику.

V. Самостоятельная работа по вариантам.

VI. Подведение итогов урока. Постановка домашнего задания.

  • Компьютер
  • Мультимедийный проектор, звуковые колонки
  • Программа “Microsoft PowerPoint 2003” .Презентация.
  • I. Организационный момент

    Ученики под руководством учителя проверяют наличие дневника, рабочей тетради, инструментов, отмечаются отсутствующие, проверяется готовность класса к уроку, учитель психологически настраивает детей на работу на уроке.

    xn--i1abbnckbmcl9fb.xn--p1ai

    Сложение чисел с разными знаками. 6-й класс

    Цели урока:

    • научить складывать отрицательные числа, числа с разными знаками и противоположные числа;
    • развитие познавательной активности, творческих способностей, умения оценивать друг друга;
    • формирование умения самостоятельно мыслить.
    • Ход урока

      Устная работа: (приложение, слайд №2-4)

      1. Как сложить две десятичные дроби?

      (Сложение по разрядам, запятая — под запятой.)

      2. Как сложить две обыкновенные дроби?

      (- найти общий знаменатель;

      — найти дополнительные множители;

      3. Вычислить:

      • 4 + 1,5 =
      • 6,3 + 3,4 =
      • 7,2 — 4,1 =
      • 4. Как сравнить десятичные дроби? (по разрядам.)

        5. Как сравнить обыкновенные дроби, если:

        а) знаменатели равны; (из двух дробей с равными знаменателями больше та, числитель которой — больше)

        б) числители равны; (из двух дробей с равными числителями больше та, числитель которой — меньше)

        в) и числитель, и знаменатель — разные. (если числители и знаменатели дробей разные, то приводим их к общему знаменателю, а затем сравниваем их также как с равными знаменателями)

        6. Сравнить:

        • 1,3 и 2,4;
        • 3,15 и 3,17;
        • и ;
        • и ;
        • и .
        • 7. Какие числа называются отрицательными? (числа со знаком «минус»)

          8. Какие числа называются положительными? (числа со знаком «плюс»)

          9. Какие числа называются противоположными? (числа, находящиеся на одинаковом расстоянии от нуля, но в противоположном направлении.)10. Назовите положительные, отрицательные и противоположные числа:

          -5,2; 35; 7,8; 5,2; -19; 24; -1,7; 28,6; 19; 1/2; -16,7; 107; 293; -1/2; 25,6; 15,015; -3/4; 27 1/2; -5,2; 1/4; -35.

          11. Когда возникли отрицательные числа? Где? Какие действия с ними умели выполнять древние? (приложение, слайд №5)

          — Отрицательные числа появились приблизительно 2100 лет тому назад в Древнем Китае. Древние толковали о долге (отрицательные числа) и имуществе (положительные числа). Долгое время такие числа считали «несуществующими» прежде всего из-за того, что принятое истолкование для положительных и отрицательных чисел «имущество — долг» приводило к недоумениям: можно сложить или вычесть «имущество» или «долги», но как понимать произведение «имущества» и «долга»? Однако несмотря на такие сомнения и недоумения действия сложения, вычитания, умножения и деления выполнялись, правила для чего были предложены греческим математиком Диофантом еще в III в нашей эры.

          Рассмотрим следующие задачи: (приложение, слайд № 6-10)

          1. В книге доходов и расходов купца сделаны следующие записи: