Генетика пола. Сцепленное с полом наследование. — 9 класс Пасечник (рабочая тетрадь)
136. Рассмотрите в учебнике схему расщепления по признаку пола. Проанализируйте ее и определите, чем отличаются хромосомные наборы у самца и самки дрозофилы.
Самки дрозофилы могут производить только 1 вид гамет (с Х половой хромосомой), их называют гомогаметным полом. Самца производят 2 вида гамет, их называют гетерогаметным полом (Х, Y половые хромосомы). Если при оплодотворении с яйцеклеткой сольется сперматозоид с Х-хромосомой, то разовьется самка, если с Y- то самец. То есть пол будущей особи определяется во время оплодотворения.
137. Запишите, как называются хромосомы:
Одинаковые у обоих полов – аутосомы.
Разные у обоих полов – половые хромосомы.
138. Прочитайте условие задачи. Проанализируйте условие задачи и заполните пропуски в предложенном алгоритме решения задачи на наследование признаков, сцепленных с полом.
У человека ген, вызывающий гемофилию, рецессивен и находится в Х-хромосоме, а альбинизм обусловлен аутосомным рецессивным геном. У родителей, нормальных по этим признакам, родился сын альбинос и гемофилик. 1) Какова вероятность (%) того, что у их следующего сына проявятся оба аномальных признака? 2) Какова вероятность (%) рождения в этой семье здоровых дочерей?
Решение:
Х° — наличие гемофилии (рецессивен), Х – отсутствие гемофилии.
А – нормальный цвет кожи
а – альбинос.
Генотипы родителей:
Мать — Х°ХАа
Отец – ХУАа.
Составим решетку Пеннета
Ответ: вероятность проявления признаков альбинизма и гемофилии (генотип Х°Уаа) – у следующего сына — 6. 25%. Вероятность рождения здоровых дочерей – (генотип ХХАА) – 6, 25%.
139. Решите задачу.
У человека отсутствие потовых желез зависит от рецессивного, сцепленного с полом гена. В семье отец и сын имеют эту аномалию, а мать здорова. 1) Какова вероятность (%), что сын унаследует вышеуказанный признак от отца? 2) Какова вероятность (%) рождения в этой семье дочери с отсутствием потовых желез?
Решение.
Гены:
Х – отсутствие болезни
Х° — болезнь.
Так как признак сцеплен с Х хромосомой, и болен сын, значит мать – носитель болезни (гетерозигота). Генотипы родителей и потомства:
Расщепление: больных дочерей 25%, дочерей носителей 25%, больных сыновей 25%, здоровых сыновей 25%.
1) 25
2) 25.
140. Решите задачу.
У кошек гены рыжего и черного цвета аллельны и локализованы в Х=хромосоме. Они передаются независимо, в связи с чем гетерозиготы имеют пеструю окраску. 1) Какое количество разных фенотипов можно получить при скрещивании трехцветной кошки с черным котом? 2) Какова вероятность (%) появления трехцветного кота?
Решение.
Х – черный цвет, Х° — рыжий цвет, Х°Х – пёстрый цвет.
Генотипы родителей и потомства:
1 пёстрая кошка: 1 черная кошка: 1 рыжий кот: 1 черный кот.
Ответ:
1) 3
2) 0.
biogdz.ru
План-конспект урока по биологии (11 класс) по теме:
Практикум по решению задач на сцепленное наследование генов и наследование, сцепленное с полом
Цель урока: формирование умений решать генетические задачи, применять теоретические знания на практике
Рассматриваются задачи на сцепленное наследование генов и сцепленное с полом наследование
Предварительный просмотр:
Практикум по решению задач на сцепленное наследование генов и наследование, сцепленное с полом
Цель урока: продолжить формирование умений решать генетические задачи, применять теоретические знания на практике.
Оборудование: сборники задач по генетике, таблицы по общей биологии.
- Проверка домашнего задания.
- Каков хромосомный механизм определения пола?
- В чем отличие хромосомного набора самца от хромосомного набора самки?
- Как называются гены, находящиеся в одной хромосоме?
- Раскройте сущность явления наследования, сцепленного с полом?
- Сколько групп сцепления у мужчин и женщин?
- Что такое кроссинговер? Какую роль он играет в явлении сцепления генов?
- Решение генетических задач.
Задача № 1. Доминантные гены катаракты и элиптоцитоза расположены в первой аутосоме. Определите вероятные фенотипы и генотипы детей от брака здоровой женщины и дигетерозиготного мужчины. Кроссинговер отсутствует.
А – катаракта Р: аb АВ
а – здоровы аb аb
фенотипы в F 1 F 1 АВ аb
Ответ: 50 % детей имеют обе аномалии, 50 % детей здоровы.
Задача № 2. При скрещивании пятнистых нормальношерстных кроликов со сплошь окрашенными ангорскими крольчихами гибриды были пятнистые нормальношерстные. В потомстве от анализирующего скрещивания получено:
52 – пятнистых ангорских;
288 – сплошь окрашенных ангорских;
46 – сплошь окрашенных нормальношерстных;
314 – пятнистых нормальношерстных.
А – пятнистая шерсть Р: АВ аb
а – сплошь окрашенная шерсть аb аb
В – нормальная длина шерсти
b – ангорская шерсть
Р: ○ – сплошь окрашенная ангорская G
□ – пятнистая нормальная шерсть
Найти: расстояние между генами
окраски и длины (С)
F 1 АВ ab Ab aB
Очевидно, что шерсть нормальной длины доминирует над ангорской, а пятнистая окраска – над сплошной. Гены окраски и длины шерсти сцеплены, так как при расщеплении в анализирующем скрещивании наблюдается неравномерное соотношение фенотипических классов (в отличие от менделеевского 9 : 3: 3: 1 для F 2 в дигибридном скрещивании).
Кроссоверные классы легко определить по меньшей численности или сравнивая классы с исходными родителями. Ясно, что здесь кроссоверные кролики 52 пятнистых ангорских и 46 сплошь окрашенных нормальношерстных. Для определения относительного расстояния между генами окраски и длины шерсти нужно вычислить процент кроссоверных кроликов от всего потомства:
С = (52 + 46) : (52 + 288 + 46 + 314) х 100 % = 14 %
Задача № 3. от родителей, имевших по фенотипу нормальное цветовое зрение, родилось несколько детей с нормальным зрением и один мальчик дальтоник. Чем это объяснить? Каковы генотипы родителей и детей?
Х D – здоровый Скрытым носителем дальтонизма может быть
Х d – дальтоник только мать, поскольку у отца ген дальтонизма
Р – нормальное зрение проявился бы фенотипически. Следовательно,
F 1 – у всех нормальное генотип матери Х D Х d , а генотип отца – Х D У.
зрение и один мальчик
Х d У Р: Х D Х d Х D У
F 1 : Х D Х D : Х D У : Х D Х d : Х d У
здор. здор. здор. дальтоник
Ответ: Р: Х D Х d , Х D У;
F 1 : 1 Х D Х D : 1 Х D У : 1 Х D Х d : 1 Х d У.
Задача № 4. Алкогольная зависимость определяется доминантным аутосомным геном (А), а потребность в курении табака – сцепленным с полом рецессивным геном (b). Курящий и пьющий мужчина женится на женщине, которая не курит и не пьет. Мужчина гетерозиготен по гену алкоголизма, а женщина гетерозиготна по гену табакокурения.
А. С какой вероятностью в этой семье могут родиться дети со склонностью к алкоголизму?
Б. С какой вероятностью могут родиться дети со склонностью к курению?
В. С какой вероятностью могут родиться дети со склонностью к курению и алкоголизму одновременно?
Г. С какой вероятностью эти дети будут мальчиками?
А – алкогольная зависимость Р: ааХ В Х b АаХ b У
а – отсутствие алкогольной
Х В – отсутствие потребности
Х b – потребность в курении
Р: □ – курящий пьющий
(гетерозиготен по гену F 1 :
алкоголизма) ♂ АХ b АУ аХ b аУ
○ – без вредных привычек ♀
(гетерозиготна по гену аХ В АаХ В Х b АаХ В У ааХ В Х b ааХ В У
табакокурения) алк. алк. без вредных без вредных
не курит не курит привычек привычек
Найти: F 1 — ? аХ b АаХ b Х b АаХ b У ааХ b Х b ааХ b У
1.склонные к алкоголизму? алк.курит алк. курит курит курит
2.склонные к курению?
3.склонные к курению
4.□ – с вредными привычками?
Ответ: 50 % потомства склонна к алкоголизму;
50 % — склонны к курению;
25 % детей склонны к курению и алкоголизму;
12,5 % мальчиков с вредными привычками (и пьют и курят).
Задача № 5. Гладкая поверхность семян кукурузы доминирует над морщинистой, окрашенные семена доминируют над неокрашенными. Оба признака сцеплены. При скрещивании кукурузы с гладкими окрашенными семенами с растением, имеющим морщинистые неокрашенные семена, получено такое потомство: окрашенных гладких – 4152 особи, окрашенных морщинистых – 149, неокрашенных гладких – 152, неокрашенных морщинистых – 4163. Определите расстояние между генами?
А – гладкая поверхность Р: АВ аb
а — морщинистая аb аb
в – неокрашенные G
Р: ♀ глад.окр. х ♂ морщ.неокр.
F 1 4152 – окраш.глад.
152 – неокр.глад. F 1 : АВ ab Ab aB
4163 – неокр.морщ. аb аb ab ab
4152 4163 152 149
Найти: расстояние между окр.гл. неокр.морщ. неокр.гл. окр.морщ.
Всего особей получено в результате
скрещивания – 8616, из них 301 особей
являются кроссоверными. Находим
расстояние между генами окраски и формы
С = (152+149): (8616)х100% = 3,5 % или
Ответ: расстояние между генами составляет 3,5 морганиды.
Задача. Кареглазая женщина с нормальным зрением выходит замуж за кареглазого мужчину. У них родилась голубоглазая дочь – дальтоник. Карий цвет глаз доминирует над голубым, а дальтонизм определяется рецессивным геном, находящимся в Х – хромосоме. Какова вероятность того, что следующий ребенок в этой семье будет иметь такой же фенотип?
По теме: методические разработки, презентации и конспекты
Конспект урока комбинированного типа для учащихся 11 класса содержит план урока, дополненный содержанием видов деятельности учителя и учащихся. Включает большое число разнообразных заданий на пр.
Презентация содержит 30 слайдов к уроку комбинированного типа для учащихся 11 класса. Она позволяет визуализировать изучаемый материал. Расчитана на каждый этап урока: от целеполагания, до рефле.
Задачи по генетике на дигибридное скрещивание и наследование сцепленное с полом. 1 и 2 варианты.
В данном материале дается решение задачи №20 (базовый уровень ЕГЭ) 11 класс Тип с глобусом.
Цель: · изучить особенности генетического определения пола у различных групп организмов, а также наследование некоторых признаков сцепленных с по.
nsportal.ru
Решение генетических задач. Сцепленное с полом наследование
Урок 32. Введение в общую биологию и экологию 9 класс
Конспект урока «Решение генетических задач. Сцепленное с полом наследование»
Задача 1. Мужчина-дальтоник женился на женщине – носительнице цветовой слепоты. Можно ли ожидать в этом браке здорового сына? Дочь с цветовой слепотой? Какова вероятность одного и другого события?
Решение: вспомним, что цветовую слепоту вызывает рецессивный ген, который принято обозначать латинской буквой d. Соответственно, доминантная аллель, определяющая нормальное различие цветов человеком – D. Таким образом, у женщин может быть три разных комбинации генов: X D X D – здоровые, X D X d – носительницы и X d X d – страдающие дальтонизмом.
У мужчин возможны два варианта: X D Y – здоровые и X d Y – больные.
Записываем генотипы родителей. Они нам известны из условия задачи.
Записываем гаметы, которые будут образовывать родительские формы: гетерозиготная по данному признаку женщина будет давать два типа гамет, мужские гаметы также будут двух типов.
Определяем генотипы детей.
Делаем вывод о том, что половина девочек может быть носительницами дальтонизма, а другая половина – больными. Половина сыновей от этого брака здоровые, вторая половина — страдающие цветовой слепотой.
Ответ: от этого брака можно ожидать здорового сына и дочь с цветовой слепотой. Вероятность одного и другого события – 25 %.
Задача 2. У родителей, имеющих нормальное зрение, две дочери с нормальным зрением, а сын – дальтоник. Каковы генотипы родителей?
Решение: родители имеют нормальное зрение, значит мы точно знаем генотип отца. У матери может быть два варианта генотипа – либо доминантная гомозигота, то есть здоровая, либо гетерозигота, то есть носительница. Но нам известно, что у этой пары родился сын – дальтоник. Который мог получить ген d только с икс хромосомой матери. Делаем вывод о том, что мать является носительницей гена дальтонизма.
Ответ: мать гетерозиготна по данному признаку, у отца в генотипе присутствует доминантная аллель гена.
Задача 3. У человека гемофилия детерминирована сцепленным с полом рецессивным геном h. Мать и отец здоровы. Их единственный ребёнок страдает гемофилией. Кто из родителей передал ребёнку ген гемофилии?
Решение: доминантная алель H определяет нормальную свёртываемость крови. Рецессивная – h – вызывает заболевание.
Эта задача аналогична предыдущей. Так как по условию родители ребёнка здоровы, значит икс хромосома отца будет содержать ген H. А в генотипе матери будет содержаться как доминантная аллель этого гена, так и рецессивная. Таким образом, все девочки этой семьи будут здоровыми. Больным может быть только мальчик, получивший половую хромосому с геном h от своей матери.
Ответ: ген гемофилии ребёнку передала мать.
Задача 4. Отец девушки страдает гемофилией, а мать имеет нормальную свёртываемость крови и происходит из семьи, благополучной по этому заболеванию. Девушка выходит замуж за здорового юношу. Что можно сказать об их дочерях и сыновьях?
Решение: рассуждаем, какими могут быть генотипы девушки и юноши.
Молодой человек здоров, значит его генотип мы знаем однозначно. У девушки отец страдает гемофилией, значит от него она получила ген, вызывающий это заболевание. Мать девушки происходит из семьи, благополучной по этому заболеванию, значит мы с большой долей вероятности можем утверждать, что от матери девушка получила ген H.
Записываем гаметы, которые образуют родительские формы и возможные генотипы детей.
Определяем их фенотипы. Как видим, все девочки здоровы, но половина из них будут носительницами. А родившиеся мальчики могут быть как здоровыми, так и больными с вероятностью 50 %.
Ответ: все дочери здоровы, но половина из них – носительницы гемофилии. Половина мальчиков больны, а половина – здоровы.
Задача 5. Какие дети могут родиться от брака гемофилика с женщиной, страдающей дальтонизмом, а в остальном имеющей благополучный генотип?
Записываем генотип женщины. Поскольку она страдает дальтонизмом, значит это рецессивная гомозигота по генам, определяющим цветовое зрение. В остальном -благополучный генотип – значит она доминантная гомозигота по генам, определяющим свёртываемость крови.
По условию задачи мужчина – гемофилик. В его икс хромосоме будет содержаться h. Допустим также, что он не страдает дальтонизмом, поскольку не указано обратное.
Записываем возможные генотипы детей и определяем их фенотипические признаки: девочки здоровы по зрению и по крови, но являются носительницами обоих заболеваний. Мальчики – здоровые по крови дальтоники.
Ответ: от этого брака могут родиться здоровые девочки – носительницы гемофилии и не страдающие гемофилией мальчики-дальтоники.
Задача 6. У человека классическая гемофилия наследуется как сцепленный с X-хромосомой рецессивный признак. Альбинизм у человека обусловлен аутосомным рецессивным геном. У одной супружеской пары, нормальной по этим двум признакам, родился сын с обеими аномалиями. Определите генотип родителей и ребёнка.
Вводим буквенные обозначения генов.
Обозначим буквой a рецессивный ген альбинизма. A – наличие пигмента.
Записываем генотипы родителей. Нам известно, что они нормальные по обоим признакам, значит будут нести два доминантных гена. Для определения их аллелей обратимся к генотипу ребёнка. Поскольку он страдает обеими аномалиями, значит это рецессивная гомозигота по гену альбинизма, а в икс хромосоме содержится h. Возвращаемся к генотипам родителей. Гены альбинизма ребёнок получил от обоих, а икс хромосому с рецессивным геном гемофилии – от матери.
Ответ: мать ребёнка гетерозиготна по гену альбинизма и гетерозиготна по гену гемофилии, отец гетерозиготен по гену альбинизма и содержит доминантную аллель гена, отвечающего за свёртываемость крови.
Задача 7. Расстояние между генами гемофилии и дальтонизма – 9,8 морганид. Здоровая девушка, мать которой дальтоник, а отец-гемофилик, выходит замуж за здорового мужчину. Определите, какова вероятность (в процентах) появления в этой семье сыновей, страдающих двумя заболеваниями одновременно.
Решение: определяем генотипы родителей. Будем внимательны при этом, так как правильная запись условия – это уже практически решённая задача. Итак, одну икс хромосому девушка получила от матери, другую – от отца. Вместе с хромосомой матери она получила ген дальтонизма, а с хромосомой отца – ген гемофилии. Ну а поскольку девушка здорова, значит вторые аллели этих генов будут доминантными. С девушкой разобрались, а с юношей всё просто – он здоров.
Записываем гаметы, которые дают родительские формы. Гены дальтонизма и гемофилии расположены в одной хромосоме. Поэтому дигетерозиготная родительская особь будет давать два типа некроссоверных гамет – X H d и X h D. По условию задачи гены гемофилии и дальтонизма расположены на расстоянии 9,8 морганид, значит между ними происходит кроссинговер с частотой 9,8 %. Таким образом, появляются кроссоверные гаметы X H D и X h d. Их общее количество – 9,8 %, а каждой из них – 4,9 %.
Итак, в задаче спрашивается, какова вероятность появления в этой семье сыновей, страдающих двумя заболеваниями одновременно. Поскольку гамет с обоими рецессивными генами – 4,9 %, значит и вероятность рождения сыновей с двумя заболеваниями – 4,9 %.
Ответ: вероятность появления в семье сыновей, страдающих двумя заболеваниями одновременно – 4,9 %.
videouroki.net
Практическое занятие «Решение задач на сцепленное с полом наследование»
Успейте воспользоваться скидками до 50% на курсы «Инфоурок»
Министерство здравоохранения Московской области
Государственное бюджетное профессиональное образовательное учреждение Московской области
«Московский областной медицинский колледж №1»
Методическая разработка практического занятия
Решение задач на сцепленное с полом наследование
Технологическая карта занятия……………………………………6
Алгоритм решения задач на сцепленное с полом наследование..31
Учебная схема для решения задач…………………………………33
Карта медико-генетического консультирования…………………38
Использованная литература и интернет-источники……………. 41
Комплект методической обеспеченности занятия разработан для студентов 1 курса специальности 34.02.01 «Сестринское дело» по предмету «Биология», тема «Решение задач на сцепленное с полом наследование». Практическое занятие направлено на совершенствование умений у обучающихся решать генетические задачи, применять генеалогический и цитогенетический методы медицинской генетики для прогнозирования и диагностики наследственных болезней человека и представляет собой модель урока по биологии в соответствии с системно-деятельностным подходом, с использованием готовых электронных образовательных ресурсов и системы контроля и мониторинга качества знаний. Разработка включает в себя технологическую карту занятия, презентацию, цифровые образовательные ресурсы. Занятие разработано в контексте введения ФГОС ООО.
Методическая разработка практического занятия по биологии предназначена для проведения практического занятия по теме «Решение задач на сцепленное с полом наследование» в разделе «Основы генетики и селекции». Практическое занятие по теме «Решение задач на сцепленное с полом наследование» проводится после изучения темы «Генетика пола».
Закрепление изученного материала идёт наряду с выполнением практической работы «Решение задач на сцепленное с полом наследование». На теоретических занятиях отводится недостаточно времени для отработки навыков решения биологических задач. Среди основных трудностей, которые ожидают студентов при сдаче экзамена по биологии связаны с решением генетических задач. Задания такого характера встречаются в половине экзаменационных билетов, а большинство студентов с трудом решают задачи среднего уровня сложности, а некоторые и простые. Таким образом, данный практикум важен как для студента, так и для учителя, т. к. позволяет проверить не только теоретические знания по генетике, но и умение применять эти знания в практической деятельности. Кроме того, на данном занятии студенты решают практическую задачу (сталкиваются с жизненными ситуациями), что способствует реализации одной из важнейших целей изучения биологии: использование приобретённых знаний и умений в повседневной жизни. Данный урок имеет важное профориентационное значение, т. к. здесь рассматривается одна из новых отраслей медицины, и студенты могут попробовать себя в роли медико-генетических консультантов, познакомиться с некоторыми медицинскими терминами. Работая в группах на этом занятии, учащиеся продолжают развивать коммуникативные навыки, умения сравнивать, анализировать, делать выводы, аргументировать свою точку зрения. Кроме того, занятие способствует развитию биологического мышления и воспитывает биологическую культуру обучающихся. Реализации поставленных на занятии задач способствуют следующие методы и методические приёмы: мини-доклад, проблемное обучение, групповая работа (мозговой штурм), практичность теории, ролевая игра, творческое домашнее задание, которое работает на будущее.
Данное практическое занятие предназначено для студентов I курса.
Освоение содержания учебной темы «Генетика пола» обеспечивает формирование следующих результатов:
-готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли биологических компетенций в этом;
— использование различных видов познавательной деятельности и основных интеллектуальных операций (постановка задачи, формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов, формулирование выводов);
— владение основополагающими биологическими теориями, законами, понятиями:
генетические законы Менделя, хромосомная теория наследования Моргана;
— уверенное пользование биологической терминологией и символикой: гаметы, аллельные признаки, доминирование, графическое решение задач.
— формирование умения решать генетические задачи
В ходе занятий у студентов формируются следующие общеучебные компетентности
ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность
ОК 4. Осуществлять поиск и использование информации, необходимых для эффективного выполнения профессиональных задач, профессионального и личностного развития.
ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами.
ОК 12. Организовать рабочее место с соблюдением требований охраны труда.
infourok.ru
Сцепленное с полом наследование решение задач
Плодовая мушка (Drosophila melanogaster) является объектом множества генетических исследований. Плодовая мушка имеет короткий цикл воспроизводства, дает достаточно большое потомство и может легко содержаться в лабораторных условиях. Она также имеет большое количество легко определяемых признаков, которые наследуются по классической схеме моногибридного скрещивания. Но среди многих признаков у плодовой мушки, которые изучали ученые, были обнаружены признаки, наследование которых отличалось от менделевской схемы. Такие отличия были обнаружены в реципрокных скрещиваниях. Реципрокные скрещивания — это два скрещивания, которые различаются тем, кто из родителей — самец или самка вносит в зиготу доминантную или рецессивную аллель.
В первом случае скрещивали самок с темно-красными глазами с самцами с белыми глазами, а во втором наоборот, скрещивали самок с белыми глазами с самцами с темно-красными глазами. В первом случае все потомство в первом поколении имело темно-красные глаза, а во втором поколении было получено потомство в соотношении 3/4 (75%) мух с темно-красными глазами и 1/4(25%) мух с белыми глазами. Это показало, что темно-красные глаза — доминантный признак, а белые глаза — рецессивный. А соотношение потомства во втором поколении — 3:1 соответствовало классическому моногибридному скрещиванию. Но оказалось, что это не совсем так. Дело в том, что в только самцы имели белые глаза, а соотношение самцов и самок у мух с темно-красными глазами было 2:1. Во втором случае потомство в первом поколении не было одинаковым. Все самки имели темно-красные глаза, а все самцы белые глаза. Соотношение самцов и самок было равным — 1:1. Такое наследование получило название крисс-кросс наследования, когда сыновья наследуют признак матери, а дочери — признак отца. Во втором поколении этого скрещивания было получено потомство также в соотношении 1:1 — 50% мух с темно-красными глазами и 50% мух с белыми глазами, вместо 3:1, как можно было ожидать для классического моногибридного скрещивания.
Наследование сцепленное с полом
Только сопоставив эти результаты с особенностями хромосомного набора у самок и самцов плодовой мушки удалось дать объяснение полученным данным. Самки и самцы имеют четыре пары хромосом: три пары это аутосомы — хромосомы одинаковые у самца и у самки и одна отличающаяся пара хромосом. Эта пара хромосом отвечает за наследование пола. У самок она представлена двумя одинаковыми X-хромосомами, а у самцов одной X-хромосомой и одной Y-хромосомой. Самки формируют только один тип гамет с X-хромосомой, а самцы два типа гамет с X-хромосомой и Y-хромосомой. Случайное сочетание этих гамет обеспечивает равное соотношение самцов и самок в каждом поколении. Y-хромосома отличается от X-хромосомы по форме и обычно Y-хромосома характеризуется отсутствием генов, которые определяют признаки организма. Таким образом каждое скрещивание можно рассматривать как анализирующее по признаку пола.
Если гены отвечающие за проявление признака, расположены в аутосомах, то наследование не зависит от того, какой из родителей — самка или самец является носителем этого признака. Но ситуация меняется если признаки определяются генами, которые находятся в X-хромосоме. Очевидно, что признак окраски глаз у плодовой мушки сцеплен с X-хромосомой, а Y-хромосома не содержит этого гена. Используя генетический калькулятор можно смоделировать эти скрещивания.
Примеры наследования сцепленного с полом
Цвет глаз у плодовой мушки
Давайте введем необходимые обозначения. Рецессивный аллель гена окраски глаз обозначим как «w» (белые глаза), а доминантный аллель дикого типа как «w+» (темно-красные глаза ). И так как мы обозначаем аллели несколькими буквами, то нужно будет заключить их в символы » » вот так — » » и » «. Генотип самки обозначим как «XX», а генотип самца как «XY». В генетическом калькуляторе для обозначения сцепления с X-хромосомой в записи родительских генотипов сцепленные гены нужно заключить в скобки «( )». Таким образом генотип самки с белыми глазами можно записать так: X( )X( ), а генотип самки с темно-красными глазами так: X( )X( ) или в случае гибрида так: X( )X( ). Для того, что бы продемонстрировать отсутствие генов в Y-хромосоме нужно использовать символы «-» или «_» — для каждого отсутствующего гена. Тогда генотип самца с белыми глазами можно записать вот так: X( )Y(-), а генотип самца с темно-красными глазами так: X( )Y(-).
X( )X( ) и X( )Y(-) — это наши генотипы родителей для первого скрещивания. В результате этого скрещивания мы получим в первом поколении потомство с темно-красными глазами. Генотип самцов будет X( )Y(-), а у самок X( )X( ). Во втором поколении от скрещивания этих самцов и самок мы получим в потомстве соотношение фенотипов : 2 XX : 1 XY : 1 XY . То есть, 75% ( 2 XX и 1 XY ) мух с темно-красными глазами и 25% мух с белыми глазами ( 1 XY ), причем только самцы имеют белые глаза, а соотношение самцов и самок у мух с темно-красными глазами 2:1.
X( )X( ) и X( )Y(-) — генотипы родителей для второго скрещивания. В результате этого скрещивания уже в первом поколении мы получим расщепление по фенотипам в соотношении : 1(50%) XX : 1(50%) XY . И как вы можете видеть, все самки имеют темно-красные глаза, а все самцы белые глаза (крисс-кросс наследование). Во втором поколении от скрещивания этих самцов «X( )Y(-)» и самок «X( )X( )» мы получим в потомстве соотношение фенотипов: 1 XX : 1 XX : 1 XY : 1 XY . То есть, 50% ( 1 XX и 1 XY ) мух с темно-красными глазами и 50% мух с белыми глазами ( 1 XX и 1 XY ). Таким образом результаты являются совершенно достоверными.
Более наглядно эти скрещивания можно продемонстрировать с использованием Файлов признаков. Используя правила составления файлов признаков мы можем создать наш файл:
Генетический калькулятор: Вы можете открыть этот файл ( X-Linked traits 1.txt ) и вычислить результаты для Фенотипов по признакам. На вкладке «Найти» вы можете выбрать каждый фенотип и посмотреть какие генотипы его составляют.
Черепаховая окраска у кошек
Еще одним интересным примером сцепленных с X-хромосомой признаков является наследование черепаховой окраски у кошек. Дело в том, что только кошки могут иметь черепаховую окраску. Котов с черепашьей окраской не существует ( за редким исключением ). Этот факт не могли объяснить, пока не стало известно, что наследование этого признака сцеплено с X-хромосомой. Черная окраска кошек определяется доминантным аллелем — «B», а рыжая — рецессивным аллелем «b». Но если кошка имеет в генотипе оба этих аллеля, то ее окраска будет черепаховой. Очевидно , что в этом случае мы имеем дело с взаимодействием аллельных генов — кодоминированием. Поэтому для решения этой задачи мы не сможем обойтись без написания файла признаков. Используя правила формирования файлов признаков мы можем создать наш файл:
Ген окраски локализуется в X-хромосоме, но отсутствует в Y-хромосоме. Поэтому мы можем записать все возможные родительские генотипы для кошек таким образом:
Для самцов —
X(B)Y(-) — черный
X(b)Y(-) — рыжий
Для самок —
X(B)X(B) — черная
X(b)X(b) — рыжая
X(B)X(b) — черепаховаяГенетический калькулятор: Вы можете открыть этот файл ( X-Linked traits 2.txt ) и вычислить результаты для Фенотипов по признакам. Вы можете использовать для скрещиваний любые из перечисленных генотипов, но вы не сможете получить в потомстве самцов с черепаховой окраской. Самцы могут быть только черными или рыжими, но не могут иметь черепаховую окраску, так как для этого нужно, чтобы в генотипе были одновременно два аллея — доминантный «B» и рецессивный «b».
Наследование гемофилии
У человека также известны признаки, которые сцепленные с X-хромосомой. К ним относится, например, дальтонизм или очень тяжелое наследственное заболевание гемофилия. У людей, которые больны гемофилией, кровь плохо свертывается и даже маленькая царапина может вызвать сильное кровотечение. Это заболевание, за редчайшими исключениями, встречается только у мужчин. Было установлено, что гемофилия обусловлена рецессивным геном, расположенным в X-хромосоме, поэтому гетерозиготные по этому гену женщины обладают обычной свертываемостью крови.
Рассмотрим, какое потомство может появиться у гетерозиготной по признаку гемофилии женщины и нормального мужчины. Признак нормальной свертываемости крови обозначим доминантным аллелем «H», а признак гемофилии рецессивным аллелем — «h». Женский генотип мы можем записать как X(H)X(h), а мужской генотип как X(H)Y(-). От этого брака мы можем получить потомство в соотношении : 2(50%) XXH : 1(25%) XYH : 1(25%) XYh. Таки образом все девочки будут здоровы, а половина мальчиков будет больна гемофилией ( XYh ). А теперь выбирите другой тип результатов — Генотипы. Соотношение в потомстве по генотипам будет таким : 1(25%) XXHH : 1(25%) XXHh : 1(25%) XYH : 1(25%) XYh. Как ты можешь видеть все дочери всегда будут иметь нормальную свертываемость крови, но половина из них будет гетерозиготными носителями этого заболевания ( XXHh ). Также более наглядно эти скрещивания можно продемонстрировать с использованием Файла признаков. Используя правила составления файлов признаков мы можем создать наш файл:
Генетический калькулятор: Вы можете открыть этот файл ( X-Linked traits 3.txt ) и вычислить результаты для Фенотипов по признакам.
Признаки зависимые от пола
Существуют признаки, которые контролируются генами не сцепленными с X-хромосомой, но пол животного оказывает влияние на проявление этого признака. Эти признаки называются зависимыми от пола.
Безрогость у овец
Интересным примером может быть наличие или отсутствие рогов у овец. Аллель «H» определяет наличие рогов, а аллель «h» — отсутствие. Но аллель «H» — доминантный у самцов и рецессивный у самок, а аллель «h» — наоборот — рецессивный у самцов и доминантный у самок. В этом случае мы имеем дело с взаимодействием этого гена с признаком пола. Поэтому решить эту генетическую проблему не возможно без использования Файла признаков. Используя правила формирования файлов признаков мы можем создать наш файл:
Мы можем записать все возможные родительские генотипы для овец таким образом :
Для самцов —
HHXY- рогатый
HhXY — рогатый
hhXY — безрогий
Для самок —
HHXX- рогатая
HhXX — безрогая
hhXX — безрогаяГенетический калькулятор: Вы можете открыть этот файл ( Gender Linked traits 1.txt ) и вычислить результаты для Фенотипов по признакам. Вы можете использовать для скрещиваний любые из перечисленных генотипов. Животные с генотипом «HH» будут рогатыми, а с генотипом «hh» — безрогими в независимости самцы это или самки. Но животные с генотипом «Hh» будут рогатыми, если это самцы и безрогими, если это самки.
Наследственное облысение у человека
У человека зависимым от пола является ген, который отвечает за наследственное облысение. Он доминирует у мужчин и рецессивен у женщин. Лысых мужчин намного больше, чем женщин, так как для этого нужно чтобы в генотипе женщины присутствовали два таких аллеля, а для мужчин достаточно наличие только одного аллеля. Используя правила формирования файлов признаков вы можете также создать такой файл:
Мы можем записать все возможные родительские генотипы таким образом:
Для мужчин —
HHXY- лысый
HhXY — лысый
hhXY — волосатый
Для женщин —
HHXX- лысая
HhXX — волосатая
hhXX — волосатаяГенетический калькулятор : Вы можете открыть этот файл ( Gender Linked traits 2.txt ) и вычислить результаты для Фенотипов по признакам. Вы можете использовать для скрещиваний любые из перечисленных генотипов. Люди с генотипом «HH» будут лысыми, а с генотипом «hh» — волосатыми в независимости мужчина это или женщина. Но люди с генотипом «Hh» будут лысыми, если это мужчина и волосатыми, если это женщина.
www.bifidosoft.com