Закон радиоактивного распада, правила смещения
Под радиоактивным распадом, или просто распадом, понимают естественное радиоактивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад, называется материнским, возникающее ядро — дочерним.
Теория радиоактивного распада строится на предположении о том, что радиоактивный распад является спонтанным процессом, подчиняющимся законам статистики. Так как отдельные радиоактивные ядра распадаются независимо друг от друга, то можно считать, что число ядер dN , распавшихся в среднем за интервал времени от t до t + dt , пропорционально промежутку времени dt и числу N нераспавшихся ядер к моменту времени t:
(256.1)
где l — постоянная для данного радиоактивного вещества величина, называемая постоянной радиоактивного распада; знак минус указывает, что общее число радиоактивных ядер в процессе распада уменьшается. Разделив переменные и интегрируя:
(256.2)
где N 0 — начальное число нераспавшихся ядер (в момент времени t =0), N — число нераспавшихся ядер в момент времени t. Формула (256.2) выражает закон радиоактивного распада, согласно которому число нераспавшихся ядер убывает со временем по экспоненциальному закону.
Интенсивность процесса радиоактивного распада характеризуют две величины: период полураспада Т1/2 и среднее время жизни t радиоактивного ядра. Период полураспада Т1/2 — время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое. Тогда, согласно (256.2),
Периоды полураспада для естественно-радиоактивных элементов колеблются от десятимиллионных долей секунды до многих миллиардов лет.
Суммарная продолжительность жизни dN ядер равна t | dN |= l Nt dt . Проинтегрировав это выражение по всем возможным t (т. е. от 0 до ¥ ) и разделив на начальное число ядер N 0, получим среднее время жизни t радиоактивного ядра:
(учтено (256.2)). Таким образом, среднее время жизни t радиоактивного ядра есть величина, обратная постоянной радиоактивного распада l .
Активностью А нуклида (общее название атомных ядер, отличающихся числом протонов Z и нейтронов N ) в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:
(256.3)
Единица активности в СИ — беккерель (Бк): 1 Бк — активность нуклида, при которой за 1 с происходит один акт распада. До сих пор в ядерной физике применяется и внесистемная единица активности нуклида в радиоактивном источнике — кюри (Ки): 1 Ки= 3,7 × 10 10 Бк.
Радиоактивный распад происходит в соответствии с так называемыми правилами смещения, позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения:
(256.4)
(256.5)
где Х — материнское ядро, Y — символ дочернего ядра, Не — ядро гелия ( a -частица), е—символическое обозначение электрона (заряд его равен –1, а массовое число — нулю). Правила смещения являются ничем иным, как следствием двух законов, выполняющихся при радиоактивных распадах, — сохранения электрического заряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.
Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь, радиоактивными. Это приводит к возникновению цепочки, или ряда, радиоактивных превращений, заканчивающихся стабильным элементом. Совокупность элементов, образующих такую цепочку, называется радиоактивным семейством.
Из правил смещения (256.4) и (256.5) вытекает, что массовое число при a -распаде уменьшается на 4, а при b -распаде не меняется. Поэтому для всех ядер одного и того же радиоактивного семейства остаток от деления массового числа на 4 одинаков. Таким образом, существует четыре различных радиоактивных семейства, для каждого из которых массовые числа задаются одной из следующих формул:
где n — целое положительное число. Семейства называются по наиболее долгоживущему (с наибольшим периодом полураспада) «родоначальнику»: семейства тория (от Th ), нептуния (от Np ), урана (от U ) и актиния (от Ас). Конечными нуклидами соответственно являются Pb , Bi , Pb , Pb , т.е. единственное семейство нептуния (искусственно-радиоактивные ядра) заканчивается нуклидом Bi , а все остальные (естественно-радиоактивные ядра) — нуклидами Р b .
www.pppa.ru
Виды распада правила смещения
(A,Z) → (A−4, Z−2) + 4 He.
Периоды полураспада известных α-радиоактивных ядер варьируются в широких пределах. Так, изотоп вольфрама 182 W имеет период полураспада T1/2 > 8.3·10 18 лет, а изотоп протактиния 219 Pa имеет T1/2 = 5.3·10 -8 c
При альфа — распаде одного химического элемента образуется в другой элемент, который расположен в таблице Менделеева на две клетки ближе к началу, чем исходный.
Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны — −3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.
Гамма-квантами являются фотоны с высокой энергией. Считается, что энергии квантов гамма-излучения превышают 10 5 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.
Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (см. Изомерный переход, энергии таких гамма-квантов лежат в диапазоне от
1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях
37. Β- превращения, правила смещения при β-превращениях.
Бе́та-распа́д — тип радиоактивного распада, обусловленного слабым взаимодействием и изменяющего заряд ядра на единицу. При этом ядро может излучать бета-частицу (электрон или позитрон). В случае испускания электрона он называется «бета-минус» (), а в случае испускания позитрона — «бета-плюс-распадом» (). Кроме и -распадов, к бета-распадам относят также электронный захват, когда ядро захватывает атомный электрон. Во всех типах бета-распада ядро излучает электронное нейтрино (-распад, электронный захват) или антинейтрино (-распад)
При бетта — распаде одного химического элемента образуется в другой элемент, который расположен в таблице Менделеева в следующей клетке за исходным ( т. е на одну клетку ближе к концу таблицы)
38. Ядерные реакции. Деление ядер. Цепные реакции.
Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов. В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях. Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер
ДЕЛЕНИЕ ЯДЕР — процесс, при к-ром из одного атомного ядра возникают 2 (реже 3) ядра — осколка, близких по массе. Этот процесс энергетически выгоден для всех -стабильных ядер с массовым числом А>100.
Цепная реакция — химическая и ядерная реакция, в которой появление активной частицы (свободного радикала или атома в химическом, нейтрона в ядерном процессе) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы и многие атомы, в отличие от молекул, обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к их взаимодействию с исходными молекулами. При столкновении свободного радикала (R • ) с молекулой происходит разрыв одной из валентных связей последней и, таким образом, в результате реакции образуется новый свободный радикал, который, в свою очередь, реагирует с другой молекулой — происходит цепная реакция.
К цепным реакциям в химии относятся процессы окисления (горение, взрыв), крекинга, полимеризации и другие, широко применяющиеся в химической и нефтяной промышленности.
В ядерной цепной реакции (которая была так названа по аналогии с химической) активными частицами являются нейтроны, которые инициируют один из видов ядерной реакции —деление ядер. Цепная ядерная реакция является основой для ядерной энергетики и ядерного оружия.
Закон радиоактивного распада. Правила смещения
Под радиоактивным распадом, или просто распадом, понимают естественное радиоактивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад, называется материнским, возникающее ядро — дочерним.
Теория радиоактивного распада строится на предположении о том, что радиоактивный распад является спонтанным процессом, подчиняющимся законам статистики.
Так как отдельные радиоактивные ядра распадаются независимо друг от друга, т.е. можно считать, что число ядер dN, распавшихся в среднем за интервал времени от t до t+dt, пропорционально промежутку времени dt и числу N нераспавшихся ядер к моменту времени t
где λ— постоянная для данного радиоактивного вещества величина, называемая постоянной радиоактивного распада; знак минус указывает, что общее число радиоактивных ядер в процессе распада уменьшается.
Разделив переменные и интегрируя: получим
где N0—начальное число нераспавшихся ядер (в момент времени t=0), N—число нераспавшихся ядер в момент времени t. Формула выражает закон радиоактивного распада, согласно которому число нераспавшихся ядер убывает со временем по экспоненциальному закону.
Интенсивность процесса радиоактивного распада характеризуют две величины: период полураспада Т1/2 и среднее время жизни τ радиоактивного ядра.
Период полураспада Т1/2— время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое. Тогда
= N0 , (36.7)
Т1/2 = = . (36.8)
Суммарная продолжительность жизни dN ядер равна t|dN| = λNtdt. Проинтегрировав это выражение по всем возможным t (т. е. от 0 до ∞) и разделив на начальное число ядер N0, получим среднее время жизни τ радиоактивного ядра:
τ = . (36.9)
Таким образом, среднее время жизни радиоактивного ядра есть величина, обратная постоянной радиоактивного распада.
Радиоактивный распад происходит в соответствии с так называемыми правилами смещения, позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения:
→ + для a распада, (36.10)
→ + для распада β, (36.11)
где — материнское ядро, Y — символ дочернего ядра, — ядро гелия, е—символическое обозначение электрона (заряд его равен —1, а массовое число — нулю). Правила смещения являются ничем иным, как следствием двух законов, выполняющихся при радиоактивных распадах, — сохранения электрического заряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.
Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь радиоактивными. Это приводит к возникновению цепочки или ряда радиоактивных превращении, заканчивающихся стабильным элементом. Совокупность элементов, образующих такую цепочку, называется радиоактивным семейством.
Методы регистрации радиоактивного излучения:практически все методы наблюдения и регистрации радиоактивных излучений и частиц на их способности производить ионизацию и возбуждение атомов среды. Сцинтилляционный счетчик, черенковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик, камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии, искровые камеры, трековые детекторы.
Действие радиоактивных лучей на организмы. Излучение радиоактивных веществ оказывает сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001°С, нарушает жизнедеятельность клеток. Наиболее чувствительны к излучениям ядра клеток, особенно клеток, которые быстро делятся. Поэтому в первую очередь излучения поражают костный мозг, из-за чего нарушается процесс образования крови. Далее наступает поражение клеток пищеварительного тракта и других органов. Сильное влияние оказывает облучение на наследственность, которое является неблагоприятным. Облучение живых организмов может оказывать и определенную пользу. Быстро размножающиеся клетки в злокачественных опухолях более чувствительны к облучению, чем нормальные. На этом основано подавление раковой опухоли радиоактивными препараторами.
studopedia.org
Ядра большинства атомов – это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^226)Ra→(86^222)Rn+(2^4)He. Чтобы понимать смысл написанного выражения, изучите тему о массовом и зарядовом числе ядра атома.
Удалось установить, что основные виды радиоактивного распада: альфа и бета-распад происходят согласно следующему правилу смещения:
Пример α-распада: (92^238)U→(90^234)Th+(2^4)He.
Альфа-распад – это внутриядерный процесс. В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.
Пример β-распада: (19^40)K→(20^40)Ca+(-1^0)e+(0^0)v.
Бета-распад – это внутринуклонный процесс. Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.
Гамма-распад
Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма-распад.
А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.
Атомные ядра изучает ядерная физика.
Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным [сн 1] и связанным с ним магнитным моментом.
Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.
Количество протонов в ядре называется его зарядовым числом — это число равно порядковому номеру элемента, к которому относится атом, в таблице Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом () и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.
Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами
studfiles.net
Альфа- бета- и гамма- распады
Ядра большинства атомов – это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^226)Ra→(86^222)Rn+(2^4)He. Чтобы понимать смысл написанного выражения, изучите тему о массовом и зарядовом числе ядра атома.
Альфа-распад
При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2 и, соответственно, атомной массой А-4: (Z^A)X→(Z-2^(A-4))Y +(2^4)He. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.
Бета-распад
При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне: (Z^A)X→(Z+1^A)Y+(-1^0)e+(0^0)v. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.
Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.
Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма-распад.
www.nado5.ru