Оглавление:
Содержание
В этом небольшом пособии рассмотрены кинетические методы, применяемые для решения задач разрешения многомерных кривых (multivariate curve resolution). Текст ориентирован, прежде всего, на специалистов в области анализа экспериментальных данных: химиков, физиков, биологов, и т.д. Он может служить пособием для исследователей, начинающих изучение этого вопроса. Продолжить исследования можно с помощью указанной литературы.
В пособии интенсивно используются понятия и методы, описанные в других материалах по хемометрике: матричная алгебра, разрешение многомерных кривых . Читателям, которые плохо знакомы с этим аппаратом, рекомендуется изучить, или, хотя бы просмотреть, эти материалы.
Изложение иллюстрируется примерами, выполненными в рабочей книге Excel “ Grey .xls”, которая сопровождает этот документ.
Предполагается, что читатель имеет базовые навыки работы в среде Excel, умеет проводить простейшие матричные вычисления с использованием функций листа, таких как МУМНОЖ, ТЕНДЕНЦИЯ и т.п. В отличие от других пособий из серии, здесь не используется надстройка Chemometrics Add-In, зато применяется стандартная надстройка Solver.
Метод «серого» моделирования
1. Постановка задачи
Исходная постановка задачи аналогична рассмотренной в пособии «Многомерное разрешение кривых (MCR)». Рассматривается система, состоящая из нескольких веществ (компонент ) , A , B , … , концентрации которых c A ( t ) , c B ( t ) ,… закономерно изменяются со временем t , подчиняясь известному кинетическому механизму. С другой стороны каждый компонент может быть охарактеризован своим чистым спектром (понимаемым в обобщенном виде): sA(λ), sB(λ),…., где λ – это длина волны. По ходу эксперимента, в момент времени ti , на длине волны λj измеряется величина
равная линейной суперпозиции всех спектров и концентраций «чистых» компонентов.
Рис. 1 Устройство спектрально-кинетических данных
Пусть I – это число моментов наблюдений: t1,… .tI, а J – это число длин волн λ1,…,λJ . Тогда данные, получаемые в эксперименте, можно представить в матричном виде
Здесь матрицы данных X и погрешностей E имеют размерность I×J . Если в системе присутствует A химических компонентов, то матрица концентраций C имеет I строк и A столбцов. Каждый ее столбец – это кинетический профиль изменения концентрации соответствующего вещества. Матрица чистых спектров S t (ее удобнее представлять в транспонированном виде) имеет A строк и J столбцов. Каждая ее строка – это чистый спектр соответствующего компонента.
Задача MCR состоит в том, чтобы по заданной матрице данных X найти матрицы концентраций C и чистых спектров S. Для ее решения можно применять обычные, формальные (soft) методы, описанные в пособии Разрешение многомерных кривых. Однако, в отличие от общей задачи MCR, в рассматриваемом случае нам известны кинетики изменения концентрации всех компонентов
но только с точностью до неизвестных кинетических параметров k =( k1, . , kp ) – констант скоростей соответствующих реакций. Относительно матрицы спектров S известны только самые общие априорные сведения: неотрицательность, непрерывность, и т.п .
В такой постановке задача MCR является обратной задачей химической кинетики – определение оценок кинетических параметров для известного механизма при наличии «мешающих» параметров – спектральных величин (коэффициентов экстинкции). Обычно в традиционной обратной задаче исходными экспериментальными данными являются концентрации некоторых компонентов кинетической схемы, а не спектры .
В этом пособии мы покажем, как для решения спектральной задачи применяется метод «серого» моделирования, в котором сочетаются формальные («черные») алгоритмы для оценки спектральных компонент S и содержательные («белые») методы для оценки кинетических профилей C. Заметим, что для этого метода решение задачи MCR (если оно существует) является единственным.
Для иллюстрации и сравнения различных методов разделения кривых будем использовать модельный пример , помещенный в рабочую книгу Grey.xls.
Эта книга включает в себя следующие листы:
L ayout : схемы, объясняющая имена массивов, используемых в примере
Kinetics: истинные концентрационные профили C
Spectra: истинные чистые спектры S
Data: модельные данные, используемые в примере. O шибки формируются случайным образом на этой же странице.
Soft: формальный метод чередующихся наименьших квадратов (Soft-ALS)
Hard: содержательный метод чередующихся наименьших квадратов (Hard-ALS)
Прообразом для этого примера служит задача оценки кинетических параметров в последовательной реакции первого порядка
Эта кинетическая схема описывается системой дифференциальных уравнений
имеющих явное решение
Рис. 2 Новая книга Excel
Эти кинетические профили вычисляются по формулам (2) на листе Kinetics для значений параметров k1и k2 заданных в ячейках H3 ( Rate1 ) и H4 ( Rate2 ), соответственно
Для моделирования спектров использовались перекрывающиеся гауссовы пики, вычисленные для 53 условных длин волн. Они представлены на листе Spectra и показаны на Рис. 3.
Рис. 3 Спектры чистых компонент
Смешанные данные X вычисляются на листе Data по формуле ( 1 ) с относительной ошибкой 5%. Величину этой ошибки (она задается в ячейке E27 с именем RMSE ) можно менять и получать новые данные. Для этого нужно нажать кнопку Add New Error , запускающую VBA макрос MakeErrors, привязанный к этому листу.
Рис. 4 Модельные данные
4. Формальный метод чередующихся наименьших квадратов (Soft-ALS)
Для анализа полученных модельных данных X можно применить формальный метод чередующихся наименьших квадратов (ALS). Однако, в этом случае, стандартный алгоритм лучше уточнить, чтобы включить в него всю имеющуюся априорную информацию. Вот, что нужно учесть при построении метода.
1. Число компонент известно – их три: A , B , C ;
2. Спектры неотрицательны ;
3. Концентрации неотрицательны, причем A(0)=1, B(0)=C(0)=0 ;
4. Система замкнута, т.е. в любой момент t :
С учетом этой информации алгоритм метода выглядит так.
1. Задается окно – шаблон концентраций, в котором важны только нулевые значения, которые нужно удерживать при итерациях. В нашем случае, это: B(0)=C(0)=0.
2. Это окно используется как начальное приближение для матрицы концентрационных профилей Cin.
3. Из матрицы Cin создается матрица C adj : элемент матрицы C adj заменяется нулем, если соответствующий элемент Cin отрицателен, или если соответствующий элемент концентрационного окна равен нулю. Кроме того, матрица C adj нормируется так, чтобы ее элемент (1,1) был равным 1, т.к. A(0)=1.
4. Для матрицы C adj вычисляется сумма всех ее элементов по рядам и формируется вектор ( Closure ), отражающей замкнутость системы в соответствии с уравнением (3).
5. Из матрицы C adj создается матрица C hat , удовлетворяющая условиям замкнутости. Для этого каждая строка матрицы C adj делится на соответствующий элемент вектора Closure .
6. С помощью формулы
находится оценка матрицы чистых спектров Sin
6. Матрица Sin подправляется – отрицательные элементы заменяются нулями. Получается матрица S hat .
7. С помощью формулы
определяется оценка матрицы концентрационных профилей Cout.
8. Матрица Cin заменяется матрицей Cout
9. Шаги 3-8 повторяются до сходимости
Применение метода ALS для нашего примера показано на листе Soft. Здесь используется кнопка Calculate , которая запускает VBA макрос, копирующий содержание области Cout в область Cin. Число повторов задается значением в клетке K1 (имя iTer ). Алгоритм сходится за 10 итераций к результату, который по точности (δ = 5%) совпадает с величиной использованной ошибки. Здесь δ – это относительная среднеквадратичная погрешность моделирования.
Рис. 5 Решение задачи методом формального ALS
Найденное решение показано на Рис. 5. Оно отличается от известных нам истинных значений. Разумеется, это следствие глобальной неоднозначности решения, найденного формальным методом
5. Содержательный метод чередующихся наименьших квадратов (Hard-ALS)
Применяя формальный метод ALS, мы никак не учитывали имеющееся у нас знание о форме кинетических профилей – модель кинетики изменения концентраций (2). Учет этой информации усложнит алгоритм, но, очевидно, улучшит анализ данных. Вот как выглядит этот новый алгоритм.
1. Задается начальное приближение для матрицы концентрационных профилей Cin, например как решение, полученное формальным методом ALS.
2. Задаются начальные значения кинетических параметров k1,…kp
3. Из матрицы Cin создается матрица C hat : элемент матрицы C hat заменяется нулем, если соответствующий элемент Cin отрицателен.
4. По известным уравнениям (2) вычисляются все концентрации, из которых формируется матрица C fit .
5. Подбираются новые значения кинетических параметров k1,…kp такие, которые минимизируют величину
находится оценка матрицы чистых спектров S in
7. Матрица S in подправляется – отрицательные элементы заменяются нулями. Получается матрица S hat .
8. С помощью формулы
определяется оценка матрицы концентрационных профилей C out .
9. Матрица Cin заменяется матрицей C out
10. Шаги 3-9 повторяются до сходимости.
На Рис. 6 показаны решения модельной задачи, найденные с помощью описанного алгоритма.
Рис.6 Решение задачи методом содержательного ALS
Видно, что получилось гораздо лучше – ближе к истинным, исходным значениям концентраций и спектров. При этом глобальная ошибка стала несколько хуже, по сравнению с обычным ALS: 0.0200 против 0.0197. Условия замкнутости и положительности выполняются автоматически. От выбора начального приближения для матрицы Cin (шаг 1) сходимость зависит слабо.
6. Использование надстройки Solver
В описанном выше алгоритме наибольшую трудность представляет шаг 5 – подбор таких значений параметров k1 и k2,(заданных в ячейках Rates), которые минимизируют сумму квадратов разностей
||Chat – Cfit || 2
находящуюся в ячейке Fit .
Для этого мы используем процедуру Solver (Поиск решения) – стандартную надстройку Excel. Для ее подключения нужно следовать процедуре, описанной здесь, начиная со второй фазы
Рис.7 Подключение надстройки Solver
Вызывается Solver из меню Tools-Solver (Excel 2003) или Data-Solver (Excel 2007). В появившемся диалоговом окне (Рис. 8) нужно указать параметры оптимизации: целевую величину и изменяемые параметры .
Рис.8 Надстройка Solver
Solver это не очень эффективный метод оптимизации, но если его настроить должным образом (так, как показано на Рис. 9), то поиск будет проходить быстро.
Рис. 9 Настройка опций Solver
В целом, описываемый алгоритм – это довольно медленный метод. Например, для того, чтобы сойтись к решению из точки k1=0.5, k2 =0.1, требуется 300-400 итераций. Поэтому применять его на практике можно только в том случае, когда имеется некоторая автоматизация – кнопка Calculate , выполняющая заданное число итераций. Такая автоматизация возможна с применением стандартных функций надстройки Solver: SolverOptions, SolverOk, SolverSolve, описание которых приведено здесь.
Для того, чтобы VBA распознал и использовал эти функции, мало подключить надстройку Solver, необходимо также установить ссылку на библиотеку Solver в редакторе VBA. При попытке использовать встроенную автоматизацию (кнопка Calculate ) без этой ссылки появится сообщение .
Рис.1 0 Ошибка ссылки
Для того, чтобы установить ссылку, надо зайти в редактор VBA и использовать меню Tools-References . Появится окно, показанное на Рис. 11
Рис.1 1 Установка ссылки на Solver
В этом окне нужно найти и поставить галочку напротив имени SOLVER.
В исходном файле Grey.xls , размещенном на нашем сервере, надстройка Solver не подключена и ссылка на нее в редакторе VBA отсутствует. Это сделано намерено, т.к. все установленные ссылки на надстройки являются специфичными для данного компьютера, и, будучи верными для нашего компьютера, они окажутся неверными при переносе файла на другой компьютер. Поэтому пользователь должен самостоятельно подключить Solver и установить ссылку на него в редакторе. Подробнее эта проблема Excel обсуждается здесь.
Заключение
Мы рассмотрели метод «серого» моделирования, применяемый для разрешения кинетических кривых, представленных спектральными данными. Эта новая, развивающаяся область хемометрики, в которой есть еще много белых пятен. Читателю предлагается самостоятельно исследовать возможности этого метода, меняя исходные модельные данные: параметры k1и k2 (лист Kinetics) , и ошибки (лист Data).
rcs.chemometrics.ru
Методические пособия для работы с цифровой лабораторией PASCO
Методические пособия позволят легко освоить азы работы с цифровой лабораторией PASCO и эффективно организовать изучение предметов естественно-научного цикла в общеобразовательной школе или учреждении дополнительного образования.
• Методические пособия по курсу обучения естественным наукам:
• Методические пособия для учителя:
планирование уроков с цифровой лабораторией PASCO и описание лабораторных работ с методическими указаниями
• Учебные материалы для обучающегося:
рабочая тетрадь для выполнения учащимися лабораторных работ с цифровой лабораторией PASCO
• Дорожные карты:
методические рекомендации по организации проектной деятельности с цифровой лабораторией PASCO
• Модули по обучению по методу проектов:
руководство для преподавателя по организации учебного инженерного проекта с цифровой лабораторией PASCO
Все пособия соответствуют учебным программам предметного образования и требованиям ФГОС
www.polymedia.ru
Как самостоятельно обслужить бензонасос на Kia Spectra
от admin · 6 февраля, 2013
На автомобиле Kia Spectra установлен электрический топливный насос, это устройство закачивает бензин в двигатель машины. У бензонасоса имеется свой фильтр, который со временем загрязняется, в результате увеличивается нагрузка, а это, в свою очередь, приводит к поломке устройства. Если вы имеете привычку ездить с практически пустым баком и общий пробег Спектры составил уже 80 000 км, то значит пришло время провести диагностику топливного насоса.
В случае когда насос нагнетает на топливной магистрали слишком маленькое давление, мощность мотора сильно уменьшается, двигатель начинает работать с перебоями, возникают проблемы при запуске и в итоге все это приводит к крупной поломке силового агрегата. Одна из причин снижения давления в системе — загрязнение фильтра бензонасоса. Прислушаемся к устройству, если оно работает слишком тихо, то значит отверстия в сетке забиты. Вы этого можете и не увидеть, потому что дырочки слишком маленькие, следует заранее запастись увеличительным стеклом. Ежели топливный насос функционирует с перегрузками, срок его службы заметно сокращается.
Прежде чем выполнить проверку сетки бензонасоса, нам нужно прекратить подачу тока на него. Убираем нужный предохранитель или реле. Обычно при работе с электрическими устройствами мы снимаем минусовую клемму аккумулятора, но не в этом случае, потому что следующее наше действие — запуск двигателя. Мотор проработает буквально пару секунд, после чего заглохнет, так и должно быть. Теперь надо добраться до топливного насоса, который находится под крышкой люка.
Перед тем как открыть люк в баке, поверхность нужно тщательно протереть от пыли и грязи, ничего постороннего в бак попасть не должно. Снимаем все топливные шланги, используя гаечный ключ и отвертку, затем удаляем сам топливный насос . Стоит отметить, что конструкция у него достаточно простая, фильтрованная сетка расположена снаружи. Мы потихоньку снимаем ее, промываем водой и моющим средством. Чистить нужно тщательно, спешка в этом деле неуместна. Просушивать можно где угодно, но при естественных условиях на это уйдет много времени. Для ускорения процесса мы применяем компрессор, выдающий через шланг сжатый воздух. В случае когда фильтр не поддается чистке или он поврежден, нам придется купить новую сетку.
Другой вид бензонасосов представляет из себя более сложную конструкцию, все элементы которой находятся внутри специальной колбы. Сетку мы чистим таким же способом, что и раньше. Сам бензонасоса тоже нужно помыть, только делается это не водой, в качестве моющего средства мы используем неэтилированный бензин. Процесс сборки насоса Киа Спектра происходит в обратной последовательности. Устанавливаем его на штатное место, надежно соединяем все трубки и шланги топливной системы, проверяем на наличие утечки бензина, закрываем люк бака и заводим двигатель. Кстати, многое зависит от качества бензина, так что заправляться стоит в крупных АЗС, которые в случае чего могут нести ответственность за свой продукт.
sanekua.ru