Закон всемирного тяготения сила тяжести и вес тела невесомость

1. Закон всемирного тяготения. Сила тяжести. Свободное падение тел. Вес тела. Невесомость.

2. Линзы. Построение изображения в тонких линзах. Оптическая сила линзы. Формула тонкой линзы.

3. Задача на движение заряженной частицы в магнитном поле.

1. Закон всемирного тяготения:

Все тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно проп. Квадрату расстояния между ними. Эту силу называют силой тяготения.

F=G*m1*m2/r^2, где G- коэффициент пропорциональности- гравитационная постоянная. [G]=6.67 * 10^-11 Н*м^2/кг^2.

1. только для м.т.

2. тел, имеющих форму шара

3. шара большого радиуса, взаимодействующего с телами, размеры которых много меньше размеров шара.

Закон неприменим, например, для взаимодействия бесконечного стержня и шара.

Сила тяжести – это сила с которой Земля притягивает к себе тело. Пропорциональна массе тела и сообщает ему ускорение свободного падения.

g=G*M/r^2, те g не зависит от массы, но зависит от высоты тела над Землей, от широты места (Земля не инерциальная система отсчета, от породы земной коры, от формы Земли.

Сила тяготения и сила тяжести носят гравитационный характер.

Свободное падение тела является частным случаем равноускоренного движения, при условии, что ускорение а

· Свободным паденим называется такое движение тела, при котором м.т. (тело) движется под действующей только силы тяжести, при этом сопротивление воздуха не учитывается.

При движении тела вверх применимы все формулы для равнозамедленного движения; всегда есть начальная скорость, а конечная при таком движении обращается в О.

На покоящееся тело действует сила тяжести и сила реакции опоры, эта сила упругости и есть вес тела (по третьему з-н Ньютона).

Когда тело совершает свободное падение (a=g), то взаимодействие между телом и опорой отсутствует и вес тела равен 0. Это случай полной невесомости.

Может наблюдаться в следующих случаях:

1. при движении когда совпадают направления начальной скорости и ускорения

2. при движении, когда начальная скорость и ускорение противоположны

3. движение спутника по орбите

4. когда тело находится между Землей и Луной

5. лженевесомость наблюдается в воде.

2. Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями.

Тонкой, если ее толщина мала по сравнению с радиусами кривизны ее поверхностей, в противном случае – толстой.

Оптическая сила – это величина, обратная фокусному расстоянию

Измеряется в диоптриях. 1 диоптрий – это оптическая сила такой линзы, фокусное расстояние которой 1 м.

refstore.ru

Оглавление:

Закон всемирного тяготения сила тяжести и вес тела невесомость

Закон всемирного тяготения. Вес тела

Анализируя законы Кеплера, описывающие движение планет, И. Ньютон в 1667 году пришёл к открытию закона всемирного тяготения:

Все тела во Вселенной взаимно притягиваются друг к другу с силами прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними.

В такой форме закон справедлив только для двух тел, которые можно считать материальными точками. Однако можно доказать, что для двух однородных тел шарообразной формы эта форма записи закона тоже справедлива.

Измерить величину гравитационной постоянной удалось английскому физику Г. Кавендишу в 1798 году.

С помощью крутильных весов и свинцовых шаров ему удалось получить значение гравитационной постоянной:

Силой тяжести называют силу, с которой тело притягивается к планете:

Рассмотрим твёрдое тело, расположенное на горизонтальной неподвижной опоре: под действием силы тяжести тело деформируется. Если тело находится на опоре, то на нижний слой действуют все верхние слои, и, как следствие, этот слой деформируется наибольшим образом. На предпоследний слой действует меньшее количество слоёв, и он деформируется меньше. Таким образом, тело, бывшее прямоугольным, примет вид трапеции. Нижний слой приблизился при такой деформации к центру тела, а значит, возникла сила упругости, направленная в сторону, противоположную направлению смещения частиц при деформации. Сила упругости, возникшая внутри данного тела, направлена перпендикулярно опоре. Эту силу, созданную деформированным телом и приложенную к опоре, называют весом тела. Опора под действием веса деформируется. Противопо ложная весу сила упругости действует на данное тело со стороны деформированной опоры и тоже направлена перпендикулярно опоре, но называется силой реакции опоры N N (от слова normal — перпендикуляр).

zftsh.online

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

Fт=G M m / R 2 , где М — масса Земли; R — радиус Земли, G- гравитационная постоянная.

Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга, ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с 2 .

Из формулы следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы следует, что Fт = mg.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес — это упругая сила, приложенная к опоре или подвесу (т. е. к связи).

Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае Р = Fт = m g

Невесомость – это явление исчезновения веса при движении опоры или подвеса с ускорением свободного падения, т.е. а = g.

Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения. Это не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 м/с2, что всего лишь на 10% меньше, чем на поверхности Земли. Состояние невесомости на МКС возникает за счёт движения по круговой орбите с первой космической скоростью.

Тело, помещённое в закрытый контейнер, при экспериментах со свободным падением (например, сбрасываемое с высокой башни) испытывает состояние невесомости. Это происходит потому, что ускорение контейнера, заключённого внутри него воздуха, и всех частей самого тела, вызываемое воздействием силы тяжести — одинаково, реакция опоры ,(в случае свободного падения тела вне контейнера это не совсем так, кроме силы тяжести на него действует ещё и реакция внешней среды — сила сопротивления воздуха).

studopedia.ru

Закон всемирного тяготения. Сила тяжести

Два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает свободное падение. Вид траектории движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. Камень, брошенный в горизонтальном направлении, через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

Таким образом, сила гравитационного притяжения в данном случае:

Подставив значение гравитационной силы в формулу для второго закона Ньютона и учитывая, что ускорение спутника – это центростремительное ускорение (спутник движется по круговой орбите), получим:

откуда скорость спутника:

Время, за которое спутник совершит один полный оборот вокруг Земли, — это период его обращения по круговой орбите, который равен:

ru.solverbook.com

Закон всемирного тяготения. Сила тяжести. Невесомость

Между любыми телами в природе существует сила взаимного притяжения, называемая силой всемирного тяготения (или силами гравитации). Закон всемирного тяготения был открыт Исааком Ньютоном в 1682 году. Когда еще ему было 23 года он высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю.

Закон всемирного тяготения: Все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

где F сила всемирного тяготения, m1 , m2 массы тел, R расстояние между телами. Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной

Физический смысл гравитационной постоянной: гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

опыт Кавендиша

G = 6,67· 10 -11 Н м 2 /кг 2 . Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798г.

Для тел, находящихся вблизи поверхности планет (в частности Земли) частным случаем проявления силы тяготения является сила тяжести: где gускорение свободного падения, g = 9,8 м/с 2

Сила тяжестиэто сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.

Сила тяжести (mg) направлена вертикально строго к центру Земли; в зависимости от расстояния до поверхности земного шара ускорение свободного падения различно. У поверхности Земли в средних широтах значение его составляет около 9,8 м/с 2 . по мере удаления от поверхности Земли g уменьшается.

Вес тела (сила веса) – это сила, с которой тело действует на горизонтальную опору или растягивает подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе. Обозначается буквой Р.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Если ускорение а = 0, то вес равен силе, с которой тело притягивается к Земле, а именно . [P] = Н.

Если другое состояние, то вес меняется:

  • если ускорение а не равно 0 , то вес Р = mg — ma(вниз) илиР = mg + ma(вверх);
  • если тело падает свободно или движется с ускорением свободного падения, т.е. а =g (рис.2), то вес тела равен 0 (Р=0). Состояние тела, в котором его вес равен нулю, называетсяневесомостью.

В невесомости находятся и космонавты. В невесомости на мгновение оказываетесь и вы, когда подпрыгиваете во время игры в баскетбол или танца.

Домашний эксперимент: Пластиковая бутылка с отверстием у дна наполняется водой. Выпускаем из рук с некоторой высоты. Пока бутылка падает, вода из отверстия не вытекает.

Вес тела движущегося с ускорением (в лифте) Тело в лифте испытывает перегрузки

kaplio.ru