Запасные питательные вещества растений.
Вследствие фотосинтеза в клетках зеленых растений образуются органические вещества, часть которых откладывается про запас. В качестве запасных питательных веществ встречаются основные группы органических соединений — углеводы, липиды и белки. Они накапливаются в плодах и семенах, в корнях, стеблях, клубнях и корневищах. При ростовых процессов эти вещества включаются в обмен веществ как источник энергии и метаболитов.
Различные формы запасных питательных веществ относятся к категории включений — временных компонентов клеток, способных образовываться и ферментативно разлагаться в разные периоды их жизнедеятельности.
Углеводы. К основным запасных углеводов принадлежит крахмал. Это один из самых распространенных полисахаридов, который откладывается во всех растениях, кроме грибов и цианобактерий. По физиологическим назначению и местонахождению, крахмал различают три типа: ассимилирующий, транзиторный и запасной.
Белковые кристаллы содержатся в клетках многих растений и имеют форму правильных кристаллических образований. В клетках картофеля кристаллоиды лежат в поверхностных слоях, где имеют форму правильного кубика. Белковые кристаллы локализуются непосредственно в цитоплазме, в клеточном соке, а иногда в ядре
Чаще запасные белки содержатся в клетках в виде специфических образований — белковых тел или их называют Алейрон зерна. Они распространены в семенах, что содержит много белков, липидов и крахмала. Алейрон зерна состоят из оболочки и аморфной белковой массы, в которой встречаются три типа включений: глобоиды, кристаллоиды и кристаллы оксалата кальция. Глобоиды преимущественно сферические и в одной алейроновом зерне бывает один или несколько глобоидив. Включение в алейроновом зернах являются специфическими и по их форме можно определить видовую принадлежность растений. Глобоиды является источником ионов магния, кальция и фосфора, способствующие растворению белковых веществ. Они содержат богатые энергию запасные вещества и наиболее дефицитные элементы, используемые зародышем при развитии и образовании новых тканей. В зерновках злаков Алейрон зерна находятся во внешнем слое эндосперма под плодовой оболочкой, образуя специализированный алейроновый слой клеток, а в семенах бобовых они расположены в клетках семядолей среди крахмальных зерен.
Липиды — триацилглицеролов — относятся к группе органических соединений, откладываются про запас. Они содержатся в цитоплазме растительных клеток в виде бесцветных или желтых шариков. Как протоплазматических включения липиды играют роль наиболее эффективной формы запасных питательных веществ в семенах, спорах, зародышах, меристематических клетках и в дифференцированных клетках, особенно в зимующих органах растений. Откладываются липиды преимущественно в жидком состоянии и называются маслами. Зависимости от количества и соотношения насыщенных и ненасыщенных жирных кислот их делят на высыхающие, образующих прочную эластичную пленку и поэтому используются для изготовления лаков и красок и невысыхающего. У растений умеренных широт накапливаются жидкие масла, а у растений тропиков — твердые.
Масла откладываются не только в плодах и семенах, но и в стебле, корнях, клубнях, луковицах и других органах.
В жизни растений запасные липиды являются основными продуктами, которые используются в процессах энергетического обмена, особенно при прорастании семян. Количество липидов в семенах некоторых растений доходит до 70%, много их в семенах подсолнечника, ореха, льна, конопли, рапса, рыжика .
В клеточном соке растений являются разнообразные дубильные вещества. Это группа соединений, способных дубиты кожу, то есть образовывать нерастворимые в воде осадки с коллагеном кожи, и проявлять вяжущий привкус. Дубильные вещества имеющиеся почти во всех растениях. Они найдены в грибах, водорослях, лишайниках, но больше всего в двудольных. Находятся эти вещества в вакуолях клеток коры, листьев, корней, плодов. Количество их уменьшается по мере созревания плодов.
studfiles.net
чем спора отличается от семени?
Спора — одноклеточная единица расселения, имеет малый запас питательных веществ. Спора прорастает при поступлении в клетку влаги. Низшие и многие высшие растения размножаются спорами, не имеющие многоклеточных покровов (исключение Харовые водоросли) .
Семя — орган полового размножения и расселения семенных растений, обычно развивающийся из оплодотворенного семязачатка.
Семя — многоклеточная структура, объединяющая запасающую ткань, зародыш и защитный покров.
1. Семя — многоклеточное, спора — одноклеточная
2. В споре нет запаса питательных веществ и зародыша, а в семени есть и то, и другое.
3. Семя покрыто семенной кожурой, а спора всего-навсего оболочкой.
Таким образом будущее поколение растений в семени защищено лучше, поэтому семенные растения преобладают над споровыми по видовому разнообразию.
Семя — орган полового размножения и расселения семенных растений, обычно развивающийся из оплодотворенного семязачатка.
Семя — многоклеточная структура, объединяющая запасающую ткань, зародыш и защитный покров.
Споры растений — микроскопические зачатки низших и высших растений, имеющие разное происхождение и служащие для их размножения и (или) сохранения при неблагоприятных условиях. Представляют собой одноклеточные, реже двуклеточные или состоящие из нескольких клеток образования. Обычно более или менее шарообразной, эллипсоидальной формы, реже — цилиндрической и др.
[править] Спородерма
Совокупность оболочек споры, спородерма (от sporá + dérma — «кожа, оболочка») , имеет сложное строение, дифференцируясь на наружный толстый слой, экзину (англ. exine), и внутренний — интину. Экзина состоит из спорополленина, одного из самых стойких органических веществ, способного выдерживать длительные температурные и химические воздействия [1]. Благодаря стойкости экзины, споры обычно длительное время сохраняют способность к прорастанию и могут сохранятся в отложениях на протяжении геологических эпох. Спородерма часто имеет скульптурированные оболочки, покрытые гребешками, бугорками, шипами и т. д. [2]
Ести кратко то так: В споре нет запаса питательных веществ и зародыша, а в семени есть и то, и другое. ..Семя покрыто семенной кожурой, а спора всего-навсего оболочкой. Таким образом будущее поколение растений в семени защищено лучше, поэтому семенные растения преобладают над споровыми по видовому разнообразию.
Значит. спора- это одноклеточные организмы. семя это орган размножения растений.
otvet.mail.ru
Науколандия
Статьи по естественным наукам и математике
Споры бактерий
При наступлении для бактерий неблагоприятных условий они способны образовывать споры. Неблагоприятными условиями могут быть отсутствие питательных веществ в среде, изменение ее кислотности, высокие или низкие температуры, пересыхание среды и другое.
Образование спор бактериями — это в первую очередь способ пережить неблагоприятные условия среды. В отличие от других организмов у бактерий спорообразование почти не используется для размножения.
Споры бактерий сохраняют жизнеспособность в весьма неблагоприятных условиях внешней среды. Они способны переживать крайне высокие и низкие температуры, сохранять жизнеспособность на протяжении очень многих лет. Так известны бактерии, споры которых могут прорастать через 1000 лет. У других бактерий споры выдерживают кипячение. Бывает, что споры способны пережить температуру меньше -200 градусов Цельсия.
В те времена, когда жизнь на Земле только появилась, и на ней существовали преимущественно только бактерии, возможно погодные условия могли быстро меняться, становиться весьма суровыми. Чтобы выжить, бактерии эволюционно выработали в себе способность к спорообразованию. На сегодняшний день бактерии могут жить там, где другие организмы выжить не могут.
В спорах бактерий все жизненные процессы почти прекращены, цитоплазмы мало, и она густая. Спора покрыта толстой оболочкой, защищающей ее от разрушающих факторов внешней среды. Однако спора содержит все необходимое (в том числе ДНК бактерии), чтобы в благоприятных условиях прорасти и образовать полноценную бактериальную клетку.
Большинство бактерий образуют споры, которые называют эндоспорами. В основном их образуют палочковидные бактерии. «Эндо» значит «внутри». То есть у большинства бактерий споры образуются внутри клетки. При образовании спор происходит впячивание клеточной мембраны, и внутри бактерии обособляется область — будущая спора. Туда переходит ДНК. Вокруг этой области образуется толстый слой так называемой коры, которая будет защищать спору. С ее внутренней и внешней стороны присутствует мембрана. С внешней стороны от мембраны есть еще несколько оболочек.
У палочковидных бактерий эндоспоры могут образовываться в разных местах клетки. У одних — в середине, у других — ближе к концу, у третьих — у самого края палочки-клетки.
Зеленым цветом обозначена оболочка споры, пространство внутри — цитоплазма
Существуют виды бактерий, которые образуют не эндоспоры, а экзоспоры, цисты и другие формы покоящихся форм. «Экзо» говорит о том, что спора образуется не внутри клетки бактерии, а как бы снаружи от нее. Образование экзоспор происходит путем образования своеобразных почек у клетки. После чего такие почки покрываются толстой оболочкой, превращаются в споры и отделяются.
С помощью спор бактерии не только переживают неблагоприятные условия, но и расселяются, так как споры очень легкие и легко разносятся ветром и водой.
Розовым цветом обозначены бактерии, серо-зеленым — их споры. Видно, что споры меньше бактерий
scienceland.info
Состав клеток
Цитоплазма — внутреннее содержимое бактериальной клетки. Она представляет собой коллоидную систему, состоящую из воды, белков, углеводов, липидов, различных минеральных солей. Химический состав и консистенция цитоплазмы изменяются в зависимости от возраста клетки и условий окружающей среды. В цитоплазме находятся ядерное вещество, рибосомы и различные включения.
Нуклеоид, ядерное вещество клетки, ее наследственный аппарат. Ядерное вещество прокариотов в отличие ©т эукариотов не имеет собственной мембраны. Нуклеоид зрелой клетки представляет собой двойную нить ДНК, свернутую в кольцо. В молекуле ДНК закодирована генетическая информация клетки. По генетической терминологии ядерное вещество получило название генофор или геном.
Рибосомы находятся в цитоплазме клетки и выполняют функцию синтеза белка. В состав рибосомы входит 60% РНК и 40% белка. Количество рибосом в клетке достигает 10 000. Соединяясь вместе, рибосомы образуют полисомы. Включения — гранулы, содержащие различные запасные питательные вещества: крахмал, гликоген, жир, волютин. Они расположены в цитоплазме.
Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы — капсулы и споры. Капсула — внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека и животных. Капсула предохраняет микроорганизм от защитных факторов организма (возбудители пневмонии и сибирской язвы). Некоторые микроорганизмы имеют постоянную капсулу (клебсиеллы).
Споры встречаются только у палочковидных бактерий. Они образуются при попадании микроорганизма в неблагоприятные условия внешней среды (действие высоких температур, высыхание, изменение рН, уменьшение количества питательных веществ в среде и т. д.). Споры находятся внутри бактериальной клетки и представляют уплотненный участок цитоплазмы с нуклеоидом, одетый собственной плотной оболочкой. По химическому составу они отличаются от вегетативных клеток малым количеством воды, увеличенным содержанием липидов и солей кальция, что способствует высокой устойчивости спор. Спорообразование происходит в течение 18-20 ч; при попадании микроорганизма в благоприятные условия спора в течение 4-5 ч прорастает в вегетативную форму. В бактериальной клетке образуется только одна спора, следовательно, споры не являются органами размножения, а служат для переживания неблагоприятных условий.
www.mfm.nnov.ru
Споры грибов и папороника, что внутри? Нанотехнологии!
Споры грибов и папоротника представляют собой крошечные моторчики, приводящиеся в действие испарением
Еще каких-то 60 лет назад 1 мы не имели представления обо всей сложности мироустройства, окружающего нас на микроскопическом уровне. Миниатюрные компоненты, составляющие живые клетки, демонстрируют такую архитектуру и организацию, которая по своей сложности не уступает крупнейшим городам мира.
Умные споры
Возьмем к примеру споры грибов и папоротника, которые выбрасываются при размножении. 2 (Вспомините, как вы наступали на гриб-дождевик и тысячи спор разлетались в воздух). Споры грибов настолько крошечные, что выглядят как пыль на ветру. Кто бы мог подумать, что такие маленькие частицы могут показывать чудеса нанотехнологий. Недавно ученые обнаружили, что споры представляют собой «микроприводы» 3 — крошечные моторчики, приводящиеся в действие испарением. 4
споры грибов и папоротника не просто разлетаются вразброс, но имеют встроенные крошечные пусковые установки , работающие на испарении! 5 Это действительно удивительное открытие, особенно если подумать о возрасте, который эволюционисты приписывают спорообразующим растениям: «ранние споры в летописи окаменелостей появляются раньше крупных сосудистых растений и датируются возрастом в 425 милл. лет» . 6
Нам предлагают поверить в то, что 400 милл. лет назад споры целенаправленно образовывали механический метод для выбрасывания? Они были названы «микроприводами», т.е. маленькими моторчиками с размерами в диапазоне от субмикрона 7 до миллиметра. Это те же самые компоненты, которые изготавливаются из кремниевых пластин для активизации механических устройств, например, компьютеров! И мы должны поверить в то, что 400 милл. лет назад растения производили эти крошечные моторчики для размножения? Но на этом их сложность не заканчивается.
Как споры архивируют файлы
Споры должны переносить все гены своего вида, но проблема в том, что споры имеют для этого слишком миниатюрные размеры. Как же они решают эту проблему? Очень просто: они умеют уплотнять гены, «упаковывая» их в самую маленькую форму. Фактически, споры способны сжимать геном до 5% исходного объема. 8 Это не уступает возможностям архиваторов в наших компьютерех. Совсем неплохо для частицы размером с пылинку!
Споры имеют особую молекулу, которая абсолютно необходима для правильного уплотнения. 8 Отсюда напрашивается вопрос: как образующие споры растения размножались до того, как эта молекула «эволюционировала»? При этом упаковка информации — это одно дело, но что если вы не можете распаковать ее также аккуратно и точно? Чтобы следующее поколение вида продолжило свое существование, спора должна содержать механизм распаковкии питательные вещества. Вне всяких сомнений пыльца также обладает этой нанотехнологией. Подобный метод уплотнения работает также и в сперматозоидах животных и человека. К примеру, в человеческой клетке 1 метр ДНК «упакован» и вмещен в крошечном ядре клетки.
Заключение
Даже в микроскопическом мире спор мы обнаруживаем изумительную сложность и инженерное искусство. Подумать только, как много еще существует микроскопических чудес, о которых нам не известно! По мере того, как наука продолжает раскрывать тайны природы истина Сотворения становится все более и более очевидной. Вне сомнения, с течением времени исследователи будут обнаружить все больше свидетельств дел рук Божьих.
«Как многочисленны дела Твои, Господи! Все соделал Ты премудро; земля полна произведений Твоих» (Пс. 103: 24)
www.origins.org.ua