Признаки параллельности прямых правило

Параллельные прямые, признаки и условия параллельности прямых.

Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых. Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Навигация по странице.

Параллельные прямые – основные сведения.

Напомним сначала определения параллельных прямых, которые были даны в статьях прямая на плоскости и прямая в пространстве.

Две прямые на плоскости называются параллельными, если они не имеют общих точек.

Две прямые в трехмерном пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать а b .

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b , а также, что прямая b параллельна прямой a .

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

Параллельность прямых — признаки и условия параллельности.

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых. То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых углов. В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы. Покажем их на чертеже.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.

Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7 — 9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.

Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п. Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве. Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

Параллельность прямых в прямоугольной системе координат.

Если на плоскости задана прямоугольная декартова система координат, то прямую линию в этой системе координат определяет уравнение прямой на плоскости некоторого вида. Аналогично прямую линию в прямоугольной системе координат в трехмерном пространстве задают некоторые уравнения прямой в пространстве.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy . В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к условию коллинеарности двух векторов (направляющих векторов прямых или нормальных векторов прямых) или к условию перпендикулярности двух векторов (направляющего вектора одной прямой и нормального вектора второй прямой). Таким образом, если и — направляющие векторы прямых a и b , а и — нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t — некоторое действительное число. В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b — , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b — , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид . Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны. И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Параллельны ли прямые и ?

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что — нормальный вектор прямой , а — нормальный вектор прямой . Эти векторы не коллинеарны, так как не существует такого действительного числа t , для которого верно равенство (). Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

нет, прямые не параллельны.

Являются ли прямые и параллельными?

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.

Второй способ решения.

Сначала покажем, что исходные прямые не совпадают: возьмем любую точку прямой , например, (0, 1) , координаты этой точки не удовлетворяют уравнению прямой , следовательно, прямые не совпадают. Теперь проверим выполнение условия параллельности этих прямых. Нормальный вектор прямой есть вектор , а направляющий вектор прямой есть вектор . Вычислим скалярное произведение векторов и : . Следовательно, векторы и перпендикулярны, значит, выполненяется необходимое и достаточное условие параллельности заданных прямых. Таким образом, прямые параллельны.

заданные прямые параллельны.

Чтобы доказать параллельность прямых в прямоугольной системе координат в трехмерном пространстве пользуются следующим необходимым и достаточным условием.

Для параллельности несовпадающих прямых в трехмерном пространстве необходимо и достаточно, чтобы их направляющие векторы были коллинеарны.

Таким образом, если известны уравнения прямых в прямоугольной системе координат в трехмерном пространстве и нужно ответить на вопрос параллельны эти прямые или нет, то нужно найти координаты направляющих векторов этих прямых и проверить выполнение условия коллинеарности направляющих векторов. Другими словами, если и — направляющие векторы прямых a и b соответственно, то для параллельности прямых a и b необходимо и достаточно, чтобы существовало такое действительное число t , при котором справедливо .

Разберемся с применением условия параллельности прямых в пространстве при решении примера.

Докажите параллельность прямых и .

Нам заданы канонические уравнения прямой в пространстве вида и параметрические уравнения прямой в пространстве вида . Направляющие векторы и заданных прямых имеют координаты и . Так как , то . Таким образом, выполнено необходимое и достаточное условие параллельности двух прямых в пространстве. Этим доказана параллельность прямых и .

www.cleverstudents.ru

wiki.eduVdom.com

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Признаки параллельности двух прямых. Свойства параллельных прямых

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной.

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

Углы 1 и 2 внутренние односторонние, их сумма равна 180°, т. е.
∠ l + ∠ 2 = 180°. (1)

Обозначим градусную меру угла 1 через х. По условию ∠ 2 — х = 30°, или ∠ 2 = 30° + x.

Подставим в равенство (1) значения углов 1 и 2, получим
х + 30° + х = 180°.

Решая это уравнение, получим х = 75°, т. е.
∠ 1 = 75°, a ∠ 2 = 180° — 75° = 105°.

Пример 2. Две параллельные прямые пересечены третьей. Известно, что сумма двух внутренних накрест лежащих углов равна 150°. Чему равны эти углы и остальные шесть?

Решение. Пусть условию задачи соответствует рисунок 7.

Углы 1 и 2 внутренние накрест лежащие, следовательно, они равны. Сумма этих углов по условию задачи равна 150°, тогда ∠ 1 = ∠ 2 = 75°.

Найдем остальные углы (рис. 8):

∠ 1 = ∠ 3 = 75° и ∠ 2 = ∠ 7 = 75° (вертикальные). Углы 4 и 5, 6 и 8 равны как вертикальные, a ∠ 5 = ∠ 6 как внутренние накрест лежащие. Все перечисленные углы 4, 5, 6 и 8 равны между собой и равны по 105°, так как ∠ 4 + ∠ 3 = 180°, a ∠ 4 = 180° — ∠ 3.

Получили четыре угла по 75°, четыре угла по 105°.

wiki.eduvdom.com

Признаки параллельности прямых

Посмотрев данный видеоурок, вы сможете самостоятельно изучить тему «Признаки параллельности прямых», которая входит в школьный курс геометрии за 7 класс. В начале урока учитель даст определение параллельных прямых и научит школьников правильному их обозначению. Затем преподаватель расскажет о значении параллельных прямых и даст несколько примеров параллельных прямых.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

Понятие «параллельность прямых», его обоснование

Две прямые на плоскости называются параллельными, если они не пересекаются. Обозначается это так: .

Отрезки AB и CD, лежащие на параллельных прямых, называются параллельными.

Лучи, лежащие на параллельных прямых, также называются параллельными.

Задумаемся, неужели а и b нигде не пересекутся? И существуют ли такие прямые? Ведь а и b не ограничены. И в соседней комнате не пересекутся? И на луне?

Оказывается, такие прямые существуют.

Мы доказывали, что перпендикулярная прямая а к прямой с и перпендикулярная прямая b к прямой с нигде не пересекаются (Рис. 2).

То есть две перпендикулярные прямые к одной и той же третьей прямой нигде не пересекутся. Оказывается, для этих прямых есть термин.

.

Накрест лежащие углы, односторонние и соответственные углы

Рассмотрим важную геометрическую конструкцию, в которой две прямые а и b рассекаются прямой с (Рис. 3).

с – секущая а и b. Это означает, что она пересекает и а, и b.

Возникает много углов (1, 2, 3, 4, 5, 6, 7, 8).

Эти углы называются:

накрест лежащие углы: , ;

односторонние углы: , ∠3 и ∠6;

соответственные углы: , , , .

– смежные углы.

– вертикальные углы.

Признаки параллельности прямыx

Сформулируем и докажем первый признак параллельности прямых.

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Итак, даны две прямые а и b. Прямая АВ рассекает эти прямые и (Рис. 4).

Докажем, что .

Доказательство:

Возьмем середину отрезка АВ – точку О – и опустим перпендикуляр ОН на прямую а. Получим точку Н. Получим отрезок АН. Отложим от точки В по прямой b отрезок, равный длине отрезка АН. Получим точку , причем .

Имеем два треугольника и . Эти треугольники равны по первому признаку (то есть по двум сторонам и углу между ними): (по условию), (по построению), ОА = ОВ (по построению).

Из равенства треугольников следует, что . А значит – это продолжение ОН, то есть точки О, Н и лежат на одной прямой.

Также . Значит, прямая Н перпендикулярна к прямой b.

Итак, мы имеем, что , . А значит, , что и требовалось доказать.

Второй признак параллельности прямых

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Имеем: а, b, с – прямые; с – секущая,.

Третий признак параллельности прямых

Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

Имеем: а, b, с – прямые; с – секущая, (Рис. 7).

Значит, .

Применим первый признак параллельности прямых и получим, что .

Решение задач

Признаки параллельности прямых используются для решения разных задач.

а, b, с – прямые; с – секущая,, (Рис. 8)

Сведем к одному из признаков параллельности прямых.

Следовательно,. По третьему признаку параллельности прямых.

На этом уроке мы рассмотрели понятие параллельных и прямых и разобрали признаки параллельности прямых, научились их применять. На следующем занятии мы разберем свойства параллельных прямых.

Список рекомендованной литературы

  • Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. – М.: Просвещение.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5 изд. – М.: Просвещение.
  • Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. – М.: Просвещение, 2010.
  • Рекомендованные ссылки на интернет-ресурсы

    1. Параллельные прямые (Источник).
    2. Признаки параллельности двух прямых (Источник).

    Рекомендованное домашнее задание

    1. Нарисуйте произвольный треугольник АВС. Отметьте точку М на стороне АВ. Через точку М проведите прямые, параллельные двум другим сторонам.
    2. Прямая АВ пересекает прямую CD в точке А, а прямую MN в точке В. . Параллельны ли прямые CD и MN?
    3. В треугольнике АВС ВК – биссектриса. Точка К принадлежит АС. Точка М – середина стороны ВС. Доказать, что .
    4. Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

      interneturok.ru